(本題滿分14分)已知橢圓的離心率為
,右焦點
也是拋物線
的焦點。
(1)求橢圓方程;
(2)若直線與
相交于
、
兩點。
①若,求直線
的方程;
②若動點滿足
,問動點
的軌跡能否與橢圓
存在公共點?若存在,求出點
的坐標;若不存在,說明理由。
(1)根據(jù),即
,據(jù)
得
,故
,
所以所求的橢圓方程是。(3分)
(2)①當直線的斜率為
時,檢驗知
。設(shè)
,
根據(jù)得
得
。
設(shè)直線,代入橢圓方程得
,
故,得
,
代入得
,即
,
解得,故直線
的方程是
。 (8分)
②問題等價于是不是在橢圓上存在點使得
成立。
當直線是斜率為
時,可以驗證不存在這樣的點,
故設(shè)直線方程為。(9分)
用①的設(shè)法,點點的坐標為
,
若點在橢圓
上,則
,
即,
又點在橢圓上,故
,
上式即,即
,
由①知
,
代入得
,
解得,即
。(12分)
當時,
,
;
當時,
,
。
故上存在點
使
成立,
即動點的軌跡與橢圓
存在公共點,
公共點的坐標是。(14分)
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知向量 ,
,函數(shù)
. (Ⅰ)求
的單調(diào)增區(qū)間; (II)若在
中,角
所對的邊分別是
,且滿足:
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)已知,且以下命題都為真命題:
命題 實系數(shù)一元二次方程
的兩根都是虛數(shù);
命題 存在復(fù)數(shù)
同時滿足
且
.
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)已知函數(shù)
(1)若,求x的值;
(2)若對于
恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
已知橢圓:
的離心率為
,過坐標原點
且斜率為
的直線
與
相交于
、
,
.
⑴求、
的值;
⑵若動圓與橢圓
和直線
都沒有公共點,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題
((本題滿分14分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF
(如圖).
(1)當x=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,
求的最大值;
(3)當取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com