【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的頻率):
①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.試判斷設(shè)備的性能等級.
(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個數(shù)的數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下說法:
①三條直線兩兩相交,則他們一定共面.
②存在兩兩相交的三個平面可以把空間分成9部分.
③如圖是正方體的平面展開圖,則在這個正方體中,一定有平面且平面平面.
④四面體所有的棱長都相等,則它的外接球表面積與內(nèi)切球表面積之比是9.
其中正確的是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:對于每位銷售人員,均以10萬元為基數(shù),若銷售利潤沒超出這個基數(shù),則可獲得銷售利潤的5%的獎金;若銷售利潤超出這個基數(shù)(超出的部分是a萬元),則可獲得萬元的獎金.記某位銷售人員獲得的獎金為y(單位:萬元),其銷售利潤為x(單位:萬元).
(1)寫出這位銷售人員獲得的獎金y與其銷售利潤x之間的函數(shù)關(guān)系式;
(2)如果這位銷售人員獲得了萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的對稱軸為坐標(biāo)軸,焦點在軸上,離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于、兩點,且,,若原點在以為直徑的圓外,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核成績的期望值哪個大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,,,, ,為的中點.
(1)平面平面
(2)在線段上是否存在點,使二面角的大小為?若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com