【題目】在多面體中,底面是梯形,四邊形是正方形,,,面面,..
(1)求證:平面平面;
(2)設(shè)為線段上一點,,試問在線段上是否存在一點,使得平面,若存在,試指出點的位置;若不存在,說明理由?
(3)在(2)的條件下,求點到平面的距離.
【答案】(1)見解析.(2)見解析.(3).
【解析】
分析:(1)在梯形中,過點作作于,可得,所以,由面面,可得出,利用線面垂直的判定定理得平面,進而可得平面平面;(2)在線段上取點,使得,連接,先證明與相似,于是得,由線面平行的判定定理可得結(jié)果;(3)點到平面的距離就是點到平面的距離,設(shè)到平面的距離為,利用體積相等可得,,解得.
詳解:(1)因為面面,面面,,所以面,.
故四邊形是正方形,所以.
在中,,∴.,
∴,∴∴.
因為,平面,平面.
∴平面,
平面,∴平面平面.
(2)在線段上存在點,使得平面
在線段上取點,使得,連接.
在中,因為,所以與相似,所以
又平面,平面,所以平面.
(3)點到平面的距離就是點到平面的距離,設(shè)到平面的距離為,利用同角相等可得,,可得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認為“月收入以5500元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì);對任意的、,,與兩數(shù)中至少有一個屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:,且;
(3)當時,若,求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),若存在距離為的兩條直線和,使得對任意的都有,則稱函數(shù)有一個寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系.
(1)寫出曲線C的極坐標方程;
(2)設(shè)點M的極坐標為,過點M的直線與曲線C交于A、B兩點,若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家放開二胎政策后,不少家庭開始生育二胎,隨機調(diào)查110名性別不同且為獨生子女的高中生,其中同意生二胎的高中生占隨機調(diào)查人數(shù)的,統(tǒng)計情況如下表:
同意 | 不同意 | 合計 | |
男生 | 20 | ||
女生 | 20 | ||
合計 | 110 |
(l)求,的值
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認為同意生二胎與性別有關(guān)?請說明理由.
附:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為,以原點為極點,以軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的極坐標方程和直線的直角坐標方程;
(2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=bi(b∈R),是純虛數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(m+z)2所表示的點在第二象限,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,則當時,函數(shù)的圖象是否總在直線上方?請寫出判斷過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com