【題目】目前,某市出租車的計(jì)價標(biāo)準(zhǔn)是:路程以內(nèi)(含)按起步價8元收取,超過后的路程按1.9元收取,但超過后的路程需加收的返空費(fèi)(即單價為元)
(1)若,將乘客搭乘一次出租車的費(fèi)用(單位:元)表示為行程(單位:)的分段函數(shù);
(2)某乘客行程為,他準(zhǔn)備先乘一輛出租車行駛,然后再換乘另一輛出租車完成余下路程,請問:他這樣做是否比只乘一輛出租車完成全程更省錢?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知R,函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍;
(3)求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)k的范圍;
(3)若關(guān)于x的方程有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為A,直線過點(diǎn)B(1,0)且與x軸不重合,設(shè)P為圓A上一點(diǎn),線段PB的垂直平分線交直線PA于E
(1)證明為定值,并寫出E的軌跡方程;
(2)設(shè)點(diǎn)M的軌跡為曲線C1,直線交C1于M,N兩點(diǎn),問:在軸上是否存在定點(diǎn)D使直線DM與DN的傾斜角互補(bǔ),若存在求出D點(diǎn)的坐標(biāo),否則說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓: 的焦距與橢圓: 的短軸長相等,且與的長軸長相等,這兩個橢圓在第一象限的交點(diǎn)為,直線經(jīng)過在軸正半軸上的頂點(diǎn)且與直線(為坐標(biāo)原點(diǎn))垂直, 與的另一個交點(diǎn)為, 與交于, 兩點(diǎn).
(1)求的標(biāo)準(zhǔn)方程;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“H大橋”是某市的交通要道,提高過橋車輛的通行能力可改善整個城市的交通狀況.研究表明:在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時;當(dāng)時,車流速度是車流密度的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達(dá)式.
(2)設(shè)車流量,求當(dāng)車流密度為多少時,車流量最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點(diǎn),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點(diǎn),求線段的中點(diǎn)的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于兩點(diǎn),求面積的最大值,并求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com