【題目】已知平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn)

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)的軌跡方程;

(3)過(guò)原點(diǎn)的直線交橢圓于兩點(diǎn),求面積的最大值,并求此時(shí)直線的方程.

【答案】123面積的最大值為,

【解析】

試題(1)利用橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)即可得出;(2)分別設(shè)點(diǎn)P,線段PA的中點(diǎn)Mx,y).利用中點(diǎn)坐標(biāo)公式及代點(diǎn)法即可得出;(3)對(duì)直線BC的斜率分存在于不存在兩種情況討論,當(dāng)直線BC的斜率存在時(shí),把直線BC的方程與橢圓的方程聯(lián)立,解得點(diǎn)BC的坐標(biāo),利用兩點(diǎn)間的距離公式即可得出|BC|,再利用點(diǎn)到直線的距離公式即可得出點(diǎn)A到直線BC的距離,利用三角形的面積計(jì)算公式即可得出,再利用導(dǎo)數(shù)得出其最值

試題解析:(1)設(shè)橢圓的方程為

由題意可知:,

所以橢圓的方程為:

2)設(shè),則有:

又因?yàn)椋?/span>

代入得到點(diǎn)的軌跡方程:

3)當(dāng)直線的斜率不存在時(shí),

當(dāng)斜率存在時(shí),設(shè)其方程為:設(shè)

不妨設(shè),則

設(shè)點(diǎn)到直線的距離為,則:

=

當(dāng)時(shí),

當(dāng)時(shí),

上式當(dāng)且僅當(dāng)時(shí),等號(hào)成立

綜上可知,面積的最大值為,此時(shí)直線的方程為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,某市出租車(chē)的計(jì)價(jià)標(biāo)準(zhǔn)是:路程以?xún)?nèi)(含按起步價(jià)8元收取,超過(guò)后的路程按1.9元收取,但超過(guò)后的路程需加收的返空費(fèi)(即單價(jià)為

(1)若,將乘客搭乘一次出租車(chē)的費(fèi)用(單位:元)表示為行程(單位)的分段函數(shù);

(2)某乘客行程為,他準(zhǔn)備先乘一輛出租車(chē)行駛,然后再換乘另一輛出租車(chē)完成余下路程,請(qǐng)問(wèn):他這樣做是否比只乘一輛出租車(chē)完成全程更省錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其圖像與軸切于非原點(diǎn)的一點(diǎn),且該函數(shù)的極小值是,那么切點(diǎn)坐標(biāo)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲(chǔ)量巨大,已發(fā)現(xiàn)礦種76種,探明儲(chǔ)量39種,其中釩、鈦資源儲(chǔ)量分別占全國(guó)的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱(chēng).攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過(guò)程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值值越大產(chǎn)品的性能越好)與這種新合金材料的含量(單位:克)的關(guān)系為:當(dāng)時(shí),的二次函數(shù);當(dāng)時(shí),.測(cè)得部分?jǐn)?shù)據(jù)如下表:

(單位:克)

0

2

6

10

8

8

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式;

(Ⅱ)求該新合金材料的含量為何值時(shí)產(chǎn)品的性能達(dá)到最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,則,

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2AD=,BAD=90°

求證:ADBC

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列說(shuō)法:

命題“x0R,x13x0”的否定是“xR,x213x”;

已知pq為兩個(gè)命題,若“pq”為假命題,則“¬p∧¬q”為真命題

③“a>2”是“a>5”的充分不必要條件

“若xy=0,則x=0且y=0”的逆否命題為真命題

其中正確說(shuō)法的個(gè)數(shù)為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 ,

當(dāng)時(shí),證明平面平面;

當(dāng)四棱錐的體積為,且二面角為鈍角時(shí)求直線與平面所成角的正弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案