【題目】某班主任為了對(duì)本班學(xué)生的月考成績(jī)進(jìn)行分析,從全班40名同學(xué)中隨機(jī)抽取一個(gè)容量為6的樣本進(jìn)行分析.隨機(jī)抽取6位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對(duì)應(yīng)如表:

學(xué)生編號(hào)

1

2

3

4

5

6

數(shù)學(xué)分?jǐn)?shù)x

60

70

80

85

90

95

物理分?jǐn)?shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間是否具有線性相關(guān)性?

(2)如果具有線性相關(guān)性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關(guān)性,請(qǐng)說(shuō)明理由.

(3)如果班里的某位同學(xué)數(shù)學(xué)成績(jī)?yōu)?0,請(qǐng)預(yù)測(cè)這位同學(xué)的物理成績(jī)。

(附)

【答案】(1)見(jiàn)解析;(2) (3)67

【解析】

1)畫(huà)出散點(diǎn)圖,結(jié)合圖象判斷即可;

2)求出相關(guān)系數(shù),求出回歸方程即可;

3)代入x的值,求出y的預(yù)報(bào)值即可.

1)畫(huà)出散點(diǎn)圖:

通過(guò)圖象物理成績(jī)y與數(shù)學(xué)成績(jī)x之間具有線性相關(guān)性;

260+70+80+85+90+95)=80,

72+80+88+90+85+95)=85

0.6,37,

故回歸方程是:y0.6x+37;

3x50時(shí),解得:y67,

數(shù)學(xué)成績(jī)?yōu)?/span>50,預(yù)測(cè)這位同學(xué)的物理成績(jī)是67

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買(mǎi)菜”受追捧.某電商平臺(tái)在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個(gè)人近七天“線上買(mǎi)菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.

1)求的值;

2)從“線上買(mǎi)菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎(jiǎng)品,求這位“線上買(mǎi)菜”消費(fèi)總金額均低于元的概率;

3)若地區(qū)有萬(wàn)居民,該平臺(tái)為了促進(jìn)消費(fèi),擬對(duì)消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)上述頻率分布直方圖,估計(jì)該平臺(tái)在地區(qū)擬投放的電子補(bǔ)貼總金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中, , 是棱的中點(diǎn).

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線關(guān)于直線對(duì)稱(chēng)的直線為,直線與橢圓分別交于點(diǎn)、,記直線的斜率為.

(Ⅰ)求的值;

(Ⅱ)當(dāng)變化時(shí),試問(wèn)直線是否恒過(guò)定點(diǎn)? 若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖.

(1)求頻率分布直方圖中a的值;

(2)估計(jì)總體中成績(jī)落在[50,60)中的學(xué)生人數(shù);

(3)根據(jù)頻率分布直方圖估計(jì)20名學(xué)生數(shù)學(xué)考試成績(jī)的眾數(shù),平均數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)是奇函數(shù).

(1)判斷函數(shù)的奇偶性,并求實(shí)數(shù)的值;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有6個(gè)球,其中4個(gè)白球,2個(gè)紅球,從袋中任意取出兩球,求下列事件的概率:

(1) 取出的兩球1個(gè)是白球,另1個(gè)是紅球;

(2) 取出的兩球至少一個(gè)是白球。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)中, 分別是, 的中點(diǎn), 平面, 是等邊三角形, , ,.

(1)證明: 平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,拋物線C與直線l1的一個(gè)交點(diǎn)為,且為坐標(biāo)原點(diǎn)).

(Ⅰ)求拋物線C的方程;

(II)不過(guò)原點(diǎn)的直線l2l1垂直,且與拋物線交于不同的兩點(diǎn)AB,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案