【題目】如圖所示,在矩形中,,點(diǎn)的中點(diǎn),將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

【答案】1證明見(jiàn)解析;2.

【解析】

試題分析:1由題意可得是等腰直角三角形,所以,因?yàn)槠矫?/span>平面,根據(jù)面面垂直的性質(zhì)定理可得平面,可得;2所在的直線為軸、軸,過(guò)垂直于平面的射線為軸,建立空間直角坐標(biāo)系,可得平面的法向量為;設(shè)平面的法向量為,列方程組賦值求得其坐標(biāo),根據(jù)向量的夾角公式可得二面角的余弦值.

試題解析:1的中點(diǎn),是等腰直角三角形,易知,,即.又平面平面,面,又.

2分別以所在的直線為軸、軸,過(guò)垂直于平面的射線為軸,建立空間直角坐標(biāo)系,則.

設(shè)平面的法向量為;平面的法向量為.

二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且

(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時(shí)可獲得的利潤(rùn)是元.

(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于1500元,求的取值范圍;

(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為、分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于、的動(dòng)點(diǎn),且的最小值為-2

1求橢圓的標(biāo)準(zhǔn)方程;

2若過(guò)左焦點(diǎn)的直線交橢圓兩點(diǎn),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見(jiàn)部分如下:

試著根據(jù)表中的信息解答下列問(wèn)題:

(Ⅰ)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);

(Ⅱ)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80)和[80,90)分?jǐn)?shù)段的試卷中抽取7份進(jìn)行分析,再?gòu)闹腥芜x2人進(jìn)行交流,求交流的學(xué)生中,成績(jī)位于[70,80)分?jǐn)?shù)的人恰有一人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英州育才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與市醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):

日期

晝夜溫差

就診人數(shù)(個(gè))

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;

(2)求選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

其中回歸系數(shù)公式,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校的一個(gè)社會(huì)實(shí)踐調(diào)查小組,在對(duì)該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問(wèn)卷.對(duì)收回的100份有效問(wèn)卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:

做不到科學(xué)用眼

能做到科學(xué)用眼

合計(jì)

45

10

55

30

15

45

合計(jì)

75

25

100

(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問(wèn)卷中抽取了6份問(wèn)卷,從這6份問(wèn)卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問(wèn)卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(2)若在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請(qǐng)說(shuō)明理由.

附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.

獨(dú)立性檢驗(yàn)臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.840

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】衡陽(yáng)市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示

1若從第34,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),則應(yīng)從第3,4,5組各抽取多少名志愿者?

21的條件下,該市決定在第34組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】10名學(xué)生中,男生有x名,現(xiàn)從10名學(xué)生中任選6人去參加某項(xiàng)活動(dòng):①至少有1名女生;②5名男生,1名女生;③3名男生,3名女生.若要使①為必然事件,②為不可能事件,③為隨機(jī)事件,則x( )

A.5B.6C.34D.56

查看答案和解析>>

同步練習(xí)冊(cè)答案