【題目】某廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時(shí)可獲得的利潤(rùn)是元.

(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤(rùn)不低于1500元,求的取值范圍;

(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤(rùn).

【答案】(1);(2)該廠以6千克/小時(shí)的速度生產(chǎn),可獲得最大利潤(rùn)為122000.

【解析】試題分析:(1)由于生產(chǎn)了小時(shí) ,故利潤(rùn)為,解得.(2)依題意,要生產(chǎn)小時(shí),乘以每小時(shí)的利潤(rùn),可得利潤(rùn)的表達(dá)式為,利用配方法可求得當(dāng)時(shí)利潤(rùn)取得最大值,并由此求出最大值.

試題解析:(1)根據(jù)題意,

,

,得,

,得

(2)生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)為

,

, ,

當(dāng)且僅當(dāng)時(shí)取得最大值,

則獲得的最大利潤(rùn)為(元),

故該廠以6千克/小時(shí)的速度生產(chǎn),可獲得最大利潤(rùn)為122000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對(duì)任課教師年齡狀況和接受教育程度(學(xué)歷)調(diào),部分結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35~50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(1)用分層抽樣的方法在35~50歲年齡段的教師中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1人的學(xué)歷為研究生的概率;

(2)若按年齡狀況用分層抽樣的方法抽取N個(gè)人,其中35歲以下48人,50歲以上10人,再?gòu)倪@N個(gè)人中隨機(jī)抽取出1人,此人的年齡為50歲以上的概率為求x、y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示.

(1)試確定該函數(shù)的解析式;

(2)該函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱,底面為直角梯形,其中,.

1求證:側(cè)面PAD底面ABCD

2求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查方式中合適的是(

A.要了解一批節(jié)能燈的使用壽命,采用普查方式

B.調(diào)查你所在班級(jí)同學(xué)的身高,采用抽樣調(diào)查方式

C.調(diào)查沱江某段水域的水質(zhì)情況,采用抽樣調(diào)查方式

D.調(diào)查全市中學(xué)生每天的就寢時(shí)間,采用普查方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:


0

2

3

4

5


0.03





1)求的值;

2)求隨機(jī)變量的數(shù)學(xué)期望

3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;

2)設(shè)函數(shù),當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,點(diǎn)的中點(diǎn),將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線在點(diǎn)處的切線斜率為0.

(1)討論函數(shù)的單調(diào)性;

(2)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案