【題目】已知函數(shù).

1)當(dāng)時(shí),求該函數(shù)的最大值;

2)是否存在實(shí)數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對(duì)應(yīng)的值;若不存在,試說(shuō)明理由.

【答案】1;(2)存在,且.

【解析】

1)將代入函數(shù)的解析式,得出,由結(jié)合二次函數(shù)的基本性質(zhì)可得出該函數(shù)的最大值;

2)換元,將問(wèn)題轉(zhuǎn)化為二次函數(shù)在區(qū)間上的最大值為,然后分、三種情況討論,利用二次函數(shù)的基本性質(zhì)求出函數(shù)在區(qū)間上最大值,進(jìn)而求得實(shí)數(shù)的值.

(1)當(dāng)時(shí),,

,當(dāng)時(shí),該函數(shù)取得最大值,即

2,

當(dāng)時(shí),設(shè),設(shè),,

二次函數(shù)的圖象開(kāi)口向下,對(duì)稱軸為直線.

當(dāng)時(shí),函數(shù)上單調(diào)遞減,所以時(shí),不符合題意;

當(dāng)時(shí),函數(shù)上單調(diào)遞增,所以時(shí),滿足;

當(dāng)時(shí),函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

當(dāng)時(shí),,不滿足.

綜上,存在符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查患胃病是否與生活不規(guī)律有關(guān),在患胃病與生活不規(guī)律這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是(

A. 越大,患胃病與生活不規(guī)律沒(méi)有關(guān)系的可信程度越大.

B. 越大,患胃病與生活不規(guī)律有關(guān)系的可信程度越小.

C.若計(jì)算得 ,經(jīng)查臨界值表知 ,則在 個(gè)生活不規(guī)律的人中必有 人患胃病.

D.從統(tǒng)計(jì)量中得知有 的把握認(rèn)為患胃病與生活不規(guī)律有關(guān),是指有 的可能性使得推斷出現(xiàn)錯(cuò)誤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)型函數(shù)”.

1)若型函數(shù),且,求滿足條件的實(shí)數(shù)對(duì)

2)已知函數(shù).函數(shù)型函數(shù),對(duì)應(yīng)的實(shí)數(shù)對(duì),當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】原命題:“, 為兩個(gè)實(shí)數(shù),若,則 中至少有一個(gè)不小于1”,下列說(shuō)法錯(cuò)誤的是( )

A. 逆命題為:若, 中至少有一個(gè)不小于1,則,為假命題

B. 否命題為:若,則 都小于1,為假命題

C. 逆否命題為:若, 都小于1,則,為真命題

D. ”是“, 中至少有一個(gè)不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)CtR,t0)為圓心的圓與x軸交于點(diǎn)O和點(diǎn)A,與y軸交于點(diǎn)O和點(diǎn)B,其中O為原點(diǎn).

1)求證:OAB的面積為定值;

2)設(shè)直線y=-2x4與圓C交于點(diǎn)MN,若OMON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了研究期中考試前學(xué)生所做數(shù)學(xué)模擬試題的套數(shù)與考試成績(jī)的關(guān)系,統(tǒng)計(jì)了五個(gè)班做的模擬試卷套數(shù)量及期中考試的平均分如下:

套(x)

7

6

6

5

6

數(shù)學(xué)平均分(y)

125

120

110

100

115

(Ⅰ) 若x與y成線性相關(guān),則某班做了8套模擬試題,預(yù)計(jì)平均分為多少?

(2)期中考試對(duì)學(xué)生進(jìn)行獎(jiǎng)勵(lì),考入年級(jí)前200名,獲一等獎(jiǎng)學(xué)金500元;考入年級(jí)201—500 名,獲二等獎(jiǎng)學(xué)金300元;考入年級(jí)501名以后的學(xué)生生將不能獲得獎(jiǎng)學(xué)金。甲、乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,.若甲、乙兩名學(xué)生獲得每個(gè)等級(jí)的獎(jiǎng)學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金總金額X 的分布列及數(shù)學(xué)期望。

附: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】泉州是全國(guó)休閑食品重要的生產(chǎn)基地,食品產(chǎn)業(yè)是其特色產(chǎn)業(yè)之一,其糖果產(chǎn)量占全國(guó)的20%.現(xiàn)擁有中國(guó)馳名商標(biāo)17件及“全國(guó)食品工業(yè)強(qiáng)縣”2個(gè)(晉江惠安)等榮譽(yù)稱號(hào),涌現(xiàn)出達(dá)利盼盼友臣金冠雅客安記回頭客等一大批龍頭企業(yè).已知泉州某食品廠需要定期購(gòu)買(mǎi)食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為1元/千克,每次購(gòu)買(mǎi)配料需支付運(yùn)費(fèi)90元.設(shè)該廠每隔天購(gòu)買(mǎi)一次配料.公司每次購(gòu)買(mǎi)配料均需支付保管費(fèi)用,其標(biāo)準(zhǔn)如下:6天以內(nèi)(含6天),均按10元/天支付;超出6天,除支付前6天保管費(fèi)用外,還需支付剩余配料保管費(fèi)用,剩余配料按元/千克一次性支付.

(1)當(dāng)時(shí),求該廠用于配料的保管費(fèi)用元;

(2)求該廠配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,根據(jù)平均每天支付的費(fèi)用,請(qǐng)你給出合理建議,每隔多少天購(gòu)買(mǎi)一次配料較好.

附:單調(diào)遞減,在單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):

單價(jià)x(元)

8

8.2

8.4

8.6

8.8

9

銷(xiāo)量y(件)

90

84

83

80

75

68

(1)求回歸直線方程=bx+a;(其中,,,);

(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),其峰值理論傳輸速度可達(dá)每81GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來(lái)說(shuō),一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫(huà)質(zhì)(UHD)節(jié)目的時(shí)代正向我們走來(lái).某手機(jī)網(wǎng)絡(luò)研發(fā)公司成立一個(gè)專(zhuān)業(yè)技術(shù)研發(fā)團(tuán)隊(duì)解決各種技術(shù)問(wèn)題,其中有數(shù)學(xué)專(zhuān)業(yè)畢業(yè),物理專(zhuān)業(yè)畢業(yè),其它專(zhuān)業(yè)畢業(yè)的各類(lèi)研發(fā)人員共計(jì)1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分?jǐn)?shù)對(duì)工作成績(jī)進(jìn)行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).

1)從總體的1200名學(xué)生中隨機(jī)抽取1人,估計(jì)其分?jǐn)?shù)小于50的概率;

2)研發(fā)公司決定對(duì)達(dá)到某分?jǐn)?shù)以上的研發(fā)人員進(jìn)行獎(jiǎng)勵(lì),要求獎(jiǎng)勵(lì)研發(fā)人員的人數(shù)達(dá)到30%,請(qǐng)你估計(jì)這個(gè)分?jǐn)?shù)的值;

3)已知樣本中有三分之二的數(shù)學(xué)專(zhuān)業(yè)畢業(yè)的研發(fā)人員分?jǐn)?shù)不低于70分,樣本中不低于70分的數(shù)學(xué)專(zhuān)業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專(zhuān)業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計(jì)總體中數(shù)學(xué)專(zhuān)業(yè)畢業(yè)的研發(fā)人員的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案