【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68

(1)求回歸直線方程=bx+a;(其中,,,,);

(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

【答案】(1);(2)當單價定為8.25元時工廠可獲得最大利潤

【解析】

(1)先求,再根據(jù)所給數(shù)據(jù)分別求出即可(2)寫出利潤函數(shù),利用二次函數(shù)求最值即可.

(1)由平均數(shù)公式得

(x1+x2+x3+x4+x5+x6)=8.5, (y1+y2+y3+y4+y5+y6)=80.

=-20

所以a=-b=80+20×8.5=250,從而回歸直線方程為=-20x+250.

(2)設(shè)工廠獲得的利潤為L元,依題意得

L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20+361.25.

當且僅當x=8.25時,L取得最大值.

故當單價定為8.25元時,工廠可獲得最大利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的點到它的兩個焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個焦點,點, 分別是橢圓的左、右頂點.

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動點(, 位于軸兩側(cè)),且直線軸平行,直線, 分別與軸交于點 .求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當時,求該函數(shù)的最大值;

2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應(yīng)的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校高三年級學(xué)生的數(shù)學(xué)成績,從中抽取名學(xué)生的數(shù)學(xué)成績(百分制)作為樣本,按成績分成組:,,,,頻率分布直方圖如圖所示.成績落在中的人數(shù)為

(Ⅰ)求的值;

(Ⅱ)根據(jù)樣本估計總體的思想,估計該校高三年級學(xué)生數(shù)學(xué)成績的平均數(shù)和中位數(shù);

(Ⅲ)成績在分以上(含分)為優(yōu)秀,樣本中成績落在中的男、女生人數(shù)比為,成績落在中的男、女生人數(shù)比為,完成列聯(lián)表,并判斷是否有的把握認為數(shù)學(xué)成績優(yōu)秀與性別有關(guān).

參考公式和數(shù)據(jù):

男生

女生

合計

優(yōu)秀

不優(yōu)秀

合計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視節(jié)目為選拔出現(xiàn)場錄制嘉賓,在眾多候選人中隨機抽取100名選手,按選手身高分組,得到的頻率分布表如圖所示.

1)請補充頻率分布表中空白位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;

組號

分組

頻數(shù)

頻率

1

5

0.050

2

0.350

3

30

4

20

0.200

5

10

0.100

合計

100

1.00

2)為選拔出舞臺嘉賓,決定在第3、45組中用分層抽樣抽取6人上臺,求第3、4、5組每組各抽取多少人?

3)求選手的身高平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐S-ABCD中,底面ABCD為菱形,∠BAD=60°平面SAD⊥平面ABCD,SA=SDE,P,Q分別是棱AD,SC,AB的中點.

(Ⅰ)求證:PQ平面SAD;

(Ⅱ)求證:AC⊥平面SEQ;

(Ⅲ)如果SA=AB=2,求三棱錐S-ABC的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在三棱錐P—ABC中,PC⊥底面ABCAB⊥BC,DE分別是AB,PB的中點.

)求證:DE∥平面PAC

)求證:AB⊥PB

)若PCBC,求二面角P—AB—C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,且對所有的實數(shù),等式都成立,其、、、、、、、,、

1)如果函數(shù),,求實數(shù)的值;

2)設(shè)函數(shù),直接寫出滿足的兩個函數(shù);

3)如果方程無實數(shù)解,求證:方程無實解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(Ⅰ)若,求直線被曲線截得的線段的長度;

(Ⅱ)若,在曲線上求一點,使得點到直線的距離最小,并求出最小距離.

查看答案和解析>>

同步練習(xí)冊答案