【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)若,求直線被曲線截得的線段的長度;
(Ⅱ)若,在曲線上求一點,使得點到直線的距離最小,并求出最小距離.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題(Ⅰ)由題意,得曲線的普通方程和直線的普通方程,聯(lián)立方程組,解焦點,即可求解截曲線的線段長;
(Ⅱ)解法一:時,得直線的普通方程,由點到直線的距離公式,得到距離的表達式,轉(zhuǎn)化為三角函數(shù)的性質(zhì),即可求解最小值.
試題解析:
(Ⅰ)曲線的普通方程為.
當時,直線的普通方程為.
由.解得或,
直線被曲線截得的線段的長度為.
(Ⅱ)解法一:時,直線的普通方程為.
由點到直線的距離公式,橢圓上的點到直線:的距離為
,
其中滿足,.
由三角函數(shù)性質(zhì)知,當時,取最小值.
此時,,.
因此,當點位于時,點到的距離取最小值.
解法二:當時,直線的普通方程為.
設(shè)與平行,且與橢圓相切的直線的方程為.
由消去并整理得.
由判別式,解得.
所以,直線的方程為,或.
要使兩平行直線與間的距離最小,則直線的方程為.
這時,與間的距離 .
此時點的坐標為方程組的解.
因此,當點位于時,點到直線的距離取最小值.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中,,,,);
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),其峰值理論傳輸速度可達每8秒1GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時代正向我們走來.某手機網(wǎng)絡(luò)研發(fā)公司成立一個專業(yè)技術(shù)研發(fā)團隊解決各種技術(shù)問題,其中有數(shù)學專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分數(shù)對工作成績進行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).
(1)從總體的1200名學生中隨機抽取1人,估計其分數(shù)小于50的概率;
(2)研發(fā)公司決定對達到某分數(shù)以上的研發(fā)人員進行獎勵,要求獎勵研發(fā)人員的人數(shù)達到30%,請你估計這個分數(shù)的值;
(3)已知樣本中有三分之二的數(shù)學專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,樣本中不低于70分的數(shù)學專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計總體中數(shù)學專業(yè)畢業(yè)的研發(fā)人員的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標之一 .永樂橋分上下兩層,上層橋面預(yù)留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅(qū)動下逆時針勻速旋轉(zhuǎn),轉(zhuǎn)一圈大約需要30分鐘.現(xiàn)將某一個透明座艙視為摩天輪上的一個點,當點到達最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.
(1)試確定在時刻 (單位:分鐘)時點距離下層橋面的高度 (單位:米);
(2)若轉(zhuǎn)動一周內(nèi)某一個摩天輪透明座艙在上下兩層橋面之間的運行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖為某兒童游樂場一個小型摩天輪示意圖,該摩天輪近似看作半徑為的圓,圓上最低點A與地面距離為,摩天輪每60秒勻速轉(zhuǎn)動一圈,摩天輪上某點B的起始位置在最低點A處.圖中與地面垂直,以為始邊,逆時針轉(zhuǎn)動角到,設(shè)B點與地面間的距離為.
(1)求h與間關(guān)系的函數(shù)解析式;
(2)設(shè)從開始轉(zhuǎn)動,經(jīng)過t秒后到達,求h與t之間的函數(shù)關(guān)系式;
(3)如果離地面高度不低于才能獲得最佳觀景效果,在摩天輪轉(zhuǎn)動的一圈內(nèi),有多長時間B點在最佳觀景效果高度?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司的電子新產(chǎn)品未上市時,原定每件售價100元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該電子新產(chǎn)品市場潛力很大,該公司決定從第一周開始銷售時,該電子產(chǎn)品每件售價比原定售價每周漲價4元,5周后開始保持120元的價格平穩(wěn)銷售,10周后由于市場競爭日益激烈,每周降價2元,直到15周結(jié)束,該產(chǎn)品不再銷售.
(Ⅰ)求售價(單位:元)與周次()之間的函數(shù)關(guān)系式;
(Ⅱ)若此電子產(chǎn)品的單件成本(單位:元)與周次之間的關(guān)系式為,,,試問:此電子產(chǎn)品第幾周的單件銷售利潤(銷售利潤售價成本)最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體中,點P在線段上運動,給出以下四個命題:
①異面直線與所成的角為定值;
②二面角的大小為定值;
③三棱錐的體積為定值;
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面四邊形中, , 為等邊三角形,現(xiàn)將沿翻折得到四面體,點分別為的中點.
(Ⅰ)求證:四邊形為矩形;
(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通安全法有規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當減速行駛;遇行人正在通過人行橫道,應(yīng)當停車讓行.機動車行經(jīng)沒有交通信號的道路時,遇行人橫過馬路,應(yīng)當避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員“不禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
“不禮讓斑馬線”的駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 |
(1)根據(jù)表中所給的5個月的數(shù)據(jù),可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)求“不禮讓斑馬線”的駕駛員人數(shù)關(guān)于月份之間的線性回歸方程;
(3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調(diào)查,求抽取的2人分別來自兩個月份的概率;
參考公式:線性回歸方程,其中,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com