【題目】已知橢圓離心率為,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是4.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為,,且(其中O為坐標(biāo)原點(diǎn)).證明:直線l的斜率k為定值.

【答案】(1);(2)證明見解析

【解析】

1)根據(jù)離心率與四邊形面積,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)兩個(gè)交點(diǎn)P,Q,將直線方程與橢圓方程聯(lián)立,消去可得關(guān)于的一元二次方程.因?yàn)閮蓚(gè)交點(diǎn),所以判別式,并用韋達(dá)定理表示出.由直線方程和的關(guān)系表示出.進(jìn)而表示出,代入等式.即可求得斜率的值.

1)由題意得,,

,

解得,

所以橢圓C的方程為;

2)證明:直線l的方程為,點(diǎn)P,Q的坐標(biāo)分別為,,

,消去y,

,

,,

所以,

因?yàn)?/span>,

所以,

,又,

所以,

又結(jié)合圖象可知,,

所以直線l的斜率k為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省在2017年啟動(dòng)了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數(shù)學(xué)、外語(簡稱語、數(shù)、外)為高考必考科目,從物理、化學(xué)、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學(xué)科中任選三門作為選考科目.該省某中學(xué)2017級(jí)高一新生共有990人,學(xué)籍號(hào)的末四位數(shù)從00010990.

1)現(xiàn)從高一學(xué)生中抽樣調(diào)查110名學(xué)生的選考情況,問:采用什么樣的抽樣方法較為恰當(dāng)?(只寫出結(jié)論,不需要說明理由)

2)據(jù)某教育機(jī)構(gòu)統(tǒng)計(jì),學(xué)生所選三門學(xué)科在將來報(bào)考專業(yè)時(shí)受限制的百分比是不同的.該機(jī)構(gòu)統(tǒng)計(jì)了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.

設(shè)以上條形圖中受限百分比的均值為,標(biāo)準(zhǔn)差為.如果一個(gè)學(xué)生所選三門學(xué)科專業(yè)受限百分比在區(qū)間內(nèi),我們稱該選擇為恰當(dāng)選擇”.該校李明同學(xué)選擇了化學(xué),然后從余下五門選考科目中任選兩門.問李明的選擇為恰當(dāng)選擇"的概率是多少?(均值,標(biāo)準(zhǔn)差均精確到0.1

(參考公式和數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對(duì)應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )

①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)

②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)

③可預(yù)測 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=fx),若存在x0,使得fx0=x0,則稱x0是函數(shù)y=fx)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù)fx=ax2+b+1x+b-2

)當(dāng)a=2b=1時(shí),求函數(shù)fx)的不動(dòng)點(diǎn);

)若對(duì)于任意實(shí)數(shù)b,函數(shù)fx)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;

)在()的條件下,若函數(shù)y=fx)的圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)fx)的不動(dòng)點(diǎn),且直線是線段AB的垂直平分線,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為

1)問該廠至少有多少名維修工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不小于?

2)已知1名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,能使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,若對(duì)于,,使得成立,則稱集合M是“互垂點(diǎn)集”.給出下列四個(gè)集合:;;;.其中是“互垂點(diǎn)集”集合的為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)求的極值;

(2)若對(duì)任意的,當(dāng)時(shí),恒成立,求實(shí)數(shù)的最大值;

(3)若函數(shù)恰有兩個(gè)不相等的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C與橢圓的離心率相同,且橢圓C短軸的頂點(diǎn)與橢圓E長軸的頂點(diǎn)重合.

1)求橢圓C的方程;

2)若直線l與橢圓E有且僅有一個(gè)公共點(diǎn),且與橢圓C交于不同兩點(diǎn)AB,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點(diǎn)FC的一個(gè)頂點(diǎn).

)求橢圓C的方程;

)設(shè)PE上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M

i)求證:點(diǎn)M在定直線上;

ii)直線y軸交于點(diǎn)G,記的面積為的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案