【題目】在極坐標系中有如下三個結論:點P在曲線C上,則點P的極坐標滿足曲線C的極坐標方程;tan θ=1(ρ≥0)與θ≥0)表示同一條曲線;ρ=3與ρ=-3表示同一條曲線.其中正確的是(  )

A. ①③ B. C. ②③ D.

【答案】D

【解析】分析:利用曲線的極坐標方程的知識逐一判斷得解.

詳解:在直角坐標系內(nèi),曲線上每一點的坐標一定適合它的方程,但在極坐標系內(nèi),曲線上一點的所有極坐標不一定都適合方程,如:曲線C的極坐標方程為,點P(-1,0)顯然在曲線C上,但是點P的極坐標并不滿足C的極坐標方程,故錯誤;tanθ=1不僅表示θ,還表示θ,故錯誤;ρ=3與ρ=-3差別僅在于方向不同,但都表示圓心為極點,半徑為3的圓,故正確.故答案為:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心為的圓過點,且與直線相切于點。

1)求圓的方程;

2)已知點,且對于圓上任一點,線段上存在異于點的一點,使得為常數(shù)),試判斷使的面積等于4的點有幾個,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點坐標;

(2)若C上的點到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,底面邊長和側棱長都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點,PE=2EC.

(1)證明:PC⊥平面BED;
(2)設二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知有6名男醫(yī)生,4名女醫(yī)生.

(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個不同地區(qū)去巡回醫(yī)療,一個地區(qū)去一名教師,共有多少種分派方法?

(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?

非體育迷

體育迷

合計

10

55

合計


(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)設的極值點.求實數(shù)的值,并求函數(shù)的單調區(qū)間;

(II)證明:當 時,.

查看答案和解析>>

同步練習冊答案