【題目】如圖,在四棱錐中,平面.底面是菱形,

(Ⅰ)求證:直線平面;

(Ⅱ)求直線與平面所成角的正切值;

(Ⅲ)已知在線段上,且,求二面角的余弦值.

【答案】I)見解析;(II;(III

【解析】

I)由菱形的性質(zhì),得ACBD;由PA⊥平面ABCD證出PABD,結(jié)合AC、PA是平面PAC內(nèi)的相交直線,可得BD⊥平面PAC

II)過BBEAD于點(diǎn)E,連結(jié)PE.由PA⊥平面ABCDPABE,結(jié)合PAADA證出BE⊥平面PAD,可得∠BPE就是直線PB與平面PAD所成角.RtBPE中,利用三角函數(shù)的定義算出tanBPE,即得結(jié)果;

III)設(shè)FCM的中點(diǎn),連結(jié)BFDF,由等腰BMC與等腰DMC有公共的底面,證出∠BFD為二面角BMCD的平面角.然后在BFD中,利用余弦定理,算出cosBFD,即得結(jié)果.

I)∵底面ABCD是菱形,∴ACBD

PA⊥平面ABCD,BD平面ABCD,∴PABD

又∵AC、PA是平面PAC內(nèi)的相交直線,

∴直線BD⊥平面PAC;

II)過BBEAD于點(diǎn)E,連結(jié)PE

PA⊥平面ABCD,BE平面ABCD,∴PABE

BEAD,PAADA

BE⊥平面PAD,可得∠BPE就是直線PB與平面PAD所成角

RtBPE中,BEPE

tanBPE,即PB與平面PAD所成角的正切值等于;

III)設(shè)FCM的中點(diǎn),連結(jié)BF、DF

∵△BMC中,BMBC,∴BFCM.同理可得DFCM

∴∠BFD就是二面角BMCD的平面角

BFD中,BD2,BFDF,

∴由余弦定理,得cosBFD

由此可得二面角BMCD的余弦值等于

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)購(gòu)人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動(dòng)支付方式受到了人們的青睞,更被網(wǎng)友們?cè)u(píng)為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購(gòu)物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡(jiǎn)單便捷,同時(shí)也滿足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時(shí)的“賒購(gòu)”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購(gòu)”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對(duì)其注冊(cè)用戶開展抽樣調(diào)查,在每個(gè)年齡段的注冊(cè)用戶中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購(gòu)”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購(gòu)”的人數(shù)百分比y與年齡x成線性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購(gòu)”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊(cè)用戶共有2000人,試估算該網(wǎng)站20歲的注冊(cè)用戶中使用花唄“賒購(gòu)”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊(cè)用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購(gòu)”的人群中按分層抽樣的方法隨機(jī)抽取8人,再?gòu)倪@8人中簡(jiǎn)單隨機(jī)抽取2人調(diào)查他們每個(gè)月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】丑橘是人們?nèi)粘I钪谐R姷臓I(yíng)養(yǎng)型水果.某地水果批發(fā)市場(chǎng)銷售來自5個(gè)不同產(chǎn)地的丑橘,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價(jià)格(元/箱)和市場(chǎng)份額如下:

產(chǎn)地

批發(fā)價(jià)格

150

160

140

155

170

市場(chǎng)份額

市場(chǎng)份額亦稱“市場(chǎng)占有率”.指某一產(chǎn)品的銷售量在市場(chǎng)同類產(chǎn)品中所占比重.

1)從該地批發(fā)市場(chǎng)銷售的丑橘中隨機(jī)抽取一箱,估計(jì)該箱丑橘價(jià)格低于160元的概率;

2)按市場(chǎng)份額進(jìn)行分層抽樣,隨機(jī)抽取20箱丑橘進(jìn)行檢驗(yàn),①?gòu)漠a(chǎn)地,共抽取箱,求的值;②從這箱中隨機(jī)抽取三箱進(jìn)行等級(jí)檢驗(yàn),隨機(jī)變量表示來自產(chǎn)地的箱數(shù),求的分布列和數(shù)學(xué)期望.

3)產(chǎn)地的丑橘明年將進(jìn)入該地市場(chǎng),定價(jià)160/箱,并占有一定市場(chǎng)份額,原有五個(gè)產(chǎn)地的丑橘價(jià)格不變,所占市場(chǎng)份額之比不變(不考慮其他因素).設(shè)今年丑橘的平均批發(fā)價(jià)為每箱元,明年丑橘的平均批發(fā)價(jià)為每箱元,比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個(gè)命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點(diǎn),則平面

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著網(wǎng)絡(luò)的普及,數(shù)碼產(chǎn)品早已走進(jìn)千家萬戶的生活,為了節(jié)約資源,促進(jìn)資源循環(huán)利用,折舊產(chǎn)品回收行業(yè)得到迅猛發(fā)展,電腦使用時(shí)間越長(zhǎng),回收價(jià)值越低,某二手電腦交易市場(chǎng)對(duì)2018年回收的折舊電腦交易前使用的時(shí)間進(jìn)行了統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,在如圖對(duì)時(shí)間使用的分組中,將使用時(shí)間落入各組的頻率視為概率.

(1)若在該市場(chǎng)隨機(jī)選取1個(gè)2018年成交的二手電腦,求其使用時(shí)間在上的概率;

(2)根據(jù)電腦交易市場(chǎng)往年的數(shù)據(jù),得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值,其中(單位:年)表示折舊電腦的使用時(shí)間,(單位:百元)表示相應(yīng)的折舊電腦的平均交易價(jià)格.

由散點(diǎn)圖判斷,可采用作為該交易市場(chǎng)折舊電腦平均交易價(jià)格與使用年限的回歸方程,若,,選用如下參考數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)在區(qū)間(用時(shí)間組的區(qū)間中點(diǎn)值代表該組的值)上折舊電腦的價(jià)格.

5.5

8.5

1.9

301.4

79.75

385

附:參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過原點(diǎn)作射線交橢圓于,平行四邊形的頂點(diǎn),在橢圓上.

1)若射線的斜率為,求直線的斜率;

2)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間、、、時(shí),其對(duì)應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019101日至107日的空氣質(zhì)量指數(shù)直方圖,在這7天內(nèi),下列結(jié)論正確的是( )

A.4的方差小于后3的方差

B.7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3

C.7天的平均空氣質(zhì)量狀況為良

D.空氣質(zhì)量狀況為優(yōu)或良的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長(zhǎng)為3尺的正方體方木,要把它作成邊長(zhǎng)為5寸的正方體枕頭,可作多少個(gè)?”現(xiàn)有這樣的一個(gè)正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案