已知一個三棱錐有五條棱長均為1,則它的體積最大值為
 
考點:棱柱、棱錐、棱臺的體積
專題:計算題,空間位置關系與距離
分析:由已知中一個四面體有五條棱長都等于1,我們易得該四面體必然有兩個面為等邊三角形,我們根據(jù)棱錐的幾何特征,分析出當這兩個平面垂直時,該四面體的體積最大,將相關幾何量代入棱錐體積公式,即可得到答案.
解答: 解:若一個四面體有五條棱長都等于1,則它必然有兩個面為等邊三角形,結合棱錐的體積公式,我們易判斷當這兩個平面垂直時,該四面體的體積最大
此時棱錐的底面積S=
3
4
,棱錐的高為
3
2

則該四面體的體積最大值為V=
1
3
×
3
4
×
3
2
=
1
8

故答案為:
1
8
點評:本題考查的知識點是棱錐的體積公式及其幾何特征,其中根據(jù)棱錐的幾何特征,分析出當這兩個平面垂直時,該四面體的體積最大,是解答問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,以坐標軸為對稱軸,且經(jīng)過兩個點P1
6
,1),P2(-
3
,-
2
),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若兩條直線ax+2y+6=0與x+(a-1)y+(a2-1)=0平行,則a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點,過F1作直線l交此橢圓于A、B兩點,則△ABF2的周長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=3sin2x的圖象向左平移
π
6
個單位得到圖象的函數(shù)解析是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sinx
x
,下列命題正確的是
 
.(寫出所有正確命題的序號)
①f(x)是奇函數(shù);    
②對定義域內(nèi)任意x,f(x)<1恒成立;
③當x=
3
2
π時,f(x)取得極小值; 
④f(2)>f(3); 
⑤當x>0時,若方程|f(x)|=k有且僅有兩個不同的實數(shù)解α,β(α>β),則β•cosα=-sinβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)a,b,滿足(1+i)a+(1-i)b=2,則ab的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四邊形BCDE是一個正方形,AB⊥平面BCDE,則圖中互相垂直的平面有
 
對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的漸近線為y=±
3
x,且雙曲線的焦點與橢圓
x2
25
+
y2
9
=1的焦點相同,則雙曲線方程為( 。
A、
x2
8
-
y2
24
=1
B、
x2
12
-
y2
4
=1
C、
x2
24
-
y2
8
=1
D、
x2
4
-
y2
12
=1

查看答案和解析>>

同步練習冊答案