8.函數(shù)f(x)=lgx+$\sqrt{1-x}$的定義域是( 。
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

分析 根據(jù)對數(shù)函數(shù)以及二次根式的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x>0}\\{1-x≥0}\end{array}\right.$,
解得:0<x≤1,
故函數(shù)的定義域是(0,1],
故選:B.

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)以及二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),則|z1|=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)f(x)=lg(8+2x-x2)的定義域?yàn)镸,函數(shù)g(x)=$\sqrt{1-\frac{2}{x-1}}$的定義域?yàn)镹,求集合M,N,M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列關(guān)系不正確的是( 。
A.I∈NB.$\sqrt{2}$∈QC.{1,2}⊆{1,2,3}D.∅⊆{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程x5-x-1=0的一個正零點(diǎn)的存在區(qū)間可能是( 。
A.[0,1]B.[1,2]C.[2,3]D.[3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax-1-lnx(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對任意x∈(0,+∞)恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若(1+x)4=a0+a1x+a2x2+a3x3+a4x4,則a1+a2+a3+a4的值為( 。
A.0B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x+1)=$\frac{{{x^2}+2x}}{x+1}$(x≠-1).
(Ⅰ)求函數(shù)f(x)的解析式,并判斷函數(shù)f(x)的奇偶性;
(Ⅱ)求證:f($\frac{1}{x}$)=f(-x);
(Ⅲ)求證:f(x)在(0,+∞)為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=?lnx?,關(guān)于x的不等式f(x)-f(1)≥c(x-1)的解集為(0,+∞),則實(shí)數(shù)c的取值范圍是[-1,0].

查看答案和解析>>

同步練習(xí)冊答案