為了解某班關(guān)注NBA是否與性別有關(guān),對本班 48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA不關(guān)注NBA合   計(jì)
男    生6
女    生10
合    計(jì)48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為
2
3

(1)請將上面列連表補(bǔ)充完整(不用寫計(jì)算過程);
(2)判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說明你的理由.
下列的臨界值表,供參考
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
)其中 n=a+b+c+d.
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)利用所給數(shù)據(jù)可得列聯(lián)表;
(20計(jì)算相關(guān)指數(shù)K2的觀測值,比較臨界值表,可得關(guān)注NBA與性別有關(guān)判斷的可靠性程度
解答: 解:(1)列聯(lián)表補(bǔ)充如下:
關(guān)注NBA不關(guān)注NBA合計(jì)
男生22628
女生101020
合計(jì)321648
(2)由公式K2=
48×(22×10-10×6)2
28×20×32×16
≈4.286,
∵4.286>3.841.
故有95%把握認(rèn)為關(guān)注NBA與性別有關(guān).
點(diǎn)評:本題考查獨(dú)立性檢驗(yàn)知識,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若-3<a<b<2,則a-b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出下列4個(gè)圖形,其中能表示集合M到N的函數(shù)關(guān)系的有( 。 
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(lga,lgb)關(guān)于x軸的對稱點(diǎn)為(0,-1),則正數(shù)a、b的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C1:(x-1)2+y2=1與圓C2:(x-3)2+(y-2)2=1,點(diǎn)P為一動(dòng)點(diǎn),由點(diǎn)P作圓C1與圓C2的切線PA,PB,切點(diǎn)分別為A,B.若|PA|=|PB|,則點(diǎn)P的軌跡方程為( 。
A、x+y-3=0
B、x+y+3=0
C、x-y+3=0
D、x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,
π
2
)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立,則( 。
A、
3
f(
π
4
)>
2
f(
π
3
B、f(1)>2f(
π
6
)•sin1
C、
2
f(
π
6
)>f(
π
4
D、
3
f(
π
6
)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有50名學(xué)生,先有32名同學(xué)參加學(xué)校電腦繪畫比賽,后有24名同學(xué)參加電腦排版比賽.如果有3名學(xué)生這兩項(xiàng)比賽都沒參加,這個(gè)班同時(shí)參加了兩項(xiàng)比賽的同學(xué)人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(
1
x
)=
1
x+1
,則f(x)=( 。
A、
1
1+x
B、
1+x
x
C、
x
1+x
D、1+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a1a3a5=8,則a3=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案