計算:tan20°tan30°+tan30°tan40°+tan20°tan40°.
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:要求的式子即tan30°(tan20°+tan40°)+tan20°tan40°,再利用公式(tanα+tanβ)=tan(α+β)(1-tanαtanβ),化簡可得結(jié)果.
解答: 解:tan20°tan30°+tan30°tan40°+tan20°tan40°=tan30°(tan20°+tan40°)+tan20°tan40°
=
3
3
tan(20°+40°)(1-tan20°tan40°)+tan20°tan40°=
3
3
×
3
(1-tan20°tan40°)+tan20°tan40°
=1-tan20°tan40°+tan20°tan40°=1.
點評:本題主要考查兩角和的正切公式的變形應用,即(tanα+tanβ)=tan(α+β)(1-tanαtanβ),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)為奇函數(shù)的是( 。
A、y=x|x|
B、y=x2-cosx
C、y=xsinx
D、y=ex+e-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱臺ABC-A′B′C′的上、下底面均為正三角形,側(cè)面為等腰梯形,且上、下底面的邊長比為2:3,分別過AB′、B′C和B′C、A′C作截面,把這個三棱臺分成三個棱錐,則這三個棱錐的體積比為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan=2,求
15
2
sin2α-sinαcosα+3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高考理科總分得640就能上北京大學,已知一名理科學生的語文、英語、理綜合得分分別為135分,125分,260分.數(shù)學試卷中12個選擇題每題5分,且每題答對的概率都是0.9,4個填空題每題4分且每題答對的概率都是0.8,6個大題前五個每題12分,最后一題14分,前兩個大題估計能得滿分,最后一個大題估計能得2分.已知第三、四、五個大題每題答對的概率都相等,且至少答對一題的概率為0.992.
(1)求這名理科學生數(shù)學試卷得分的期望;
(2)這名學生能否考上北京大學?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={a,b},N={c,d},定義M與N的一個運算“•”為:M•N={x|x=mn,m∈M,n∈N}.
(1)對于交集,有性質(zhì)A∩B=B∩A;類比以上結(jié)論是否有M•N=N•M?并證明你的結(jié)論.
(2)舉例驗證(A•B)•C=A•(B•C).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的定義域為R,若存在常數(shù)M>0,使得|f(x)|≥M|x|對一切實數(shù)x均成立,則稱f(x)為“圓錐托底型”函數(shù).
(1)判斷函數(shù)f(x)=2x,g(x)=x3是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若f(x)=x2+1是“圓錐托底型”函數(shù),求出M的最大值.
(3)問實數(shù)k、b滿足什么條件,f(x)=kx+b是“圓錐托底型”函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖,如圖.
(1)求a的值;
(2)根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的平均值;
(注:設樣本數(shù)據(jù)第i組的頻率為pi,第i組區(qū)間的中點值為xi(i=1,2,3,…,n),則樣本數(shù)據(jù)的平均值為
.
X
=x1p1+x2p2+x3p3+…+xnpn.)
(3)從盒子中隨機抽取3個小球,其中重量在(5,15]內(nèi)的小球個數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

居住在同一個小區(qū)的甲、乙、丙三位教師家離學校都較遠,每天早上要開車去學校上班,已知從該小區(qū)到學校有兩條路線,走線路①堵車的概率為
1
4
,不堵車的概率為
3
4
;走線路②堵車的概率為p,不堵車的概率為1-p.若甲、乙兩人走線路①,丙老師因其他原因走線路②,且三人上班是否堵車相互之間沒有影響.
(Ⅰ)若三人中恰有一人被堵的概率為
7
16
,求走線路②堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三人中被堵的人數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案