下列函數(shù)為奇函數(shù)的是( 。
A、y=x|x|
B、y=x2-cosx
C、y=xsinx
D、y=ex+e-x
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:A.f(-x)=-x|-x|=-x|x|=-f(x),為奇函數(shù).
B.f(-x)=(-x)2-cos(-x)═x2-cosx=f(x),為偶函數(shù).
C.f(-x)=(-x)sin(-x)=xsinx=f(x),為偶函數(shù).
D.f(-x)=e-x+ex=f(x),為偶函數(shù).
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,利用函數(shù)奇偶性的定義是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2(x+
π
4
)-sin2(x-
π
4
)是以
 
為周期的
 
函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=3,2=-3,a3=3,a4=-3,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
右支上一點(diǎn),F(xiàn)1與F2是左右焦點(diǎn),O為原點(diǎn),則t=
PF1+PF2
OP
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知loga
x-y
2
=
logax+logay
2
,則
x
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(x,y)是平面區(qū)域
x≥0
y≥0
x-y+1≥0
2x+y-4≤0
內(nèi)的動(dòng)點(diǎn),則(x+1)2+(y+1)2的最大值是( 。
A、10
B、
49
5
C、
13
D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:①若0>a>b,則
1
a
1
b
②若a<b<0,則a2>b2③若
1
a
>1,則1>a④若a<3,b<3,則a+b<6且ab<9,其中是真命題的有( 。
A、①②B、①③
C、①②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(
πx
4
-
π
3
)-cos
πx
4

(1)求f(x)的最小正周期;
(2)設(shè)g(x)=f(-2-x),當(dāng)x∈[0,2]時(shí),求函數(shù)y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:tan20°tan30°+tan30°tan40°+tan20°tan40°.

查看答案和解析>>

同步練習(xí)冊(cè)答案