直線l1:(3+a)x+4y=5-3a和直線l2:2x+(5+a)y=8平行,則a=
 
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:根據(jù)兩直線平行的條件可知,(3+a)(5+a)-4×2=0,且5-3a≠8.進(jìn)而可求出a的值.
解答: 解:直線l1:(3+a)x+4y=5-3a和直線l2:2x+(5+a)y=8平行,
則 (3+a)(5+a)-4×2=0,
即a2+8a+7=0.
解得,a=-1或a=-7.
又∵5-3a≠8,
∴a≠-1.
∴a=-7.
故答案為:-7.
點(diǎn)評(píng):本題考查兩直線平行的條件,其中5-3a≠8是本題的易錯(cuò)點(diǎn).屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+2(p+1)x+9p-5=0的兩根皆為負(fù)數(shù),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若對(duì)一切實(shí)數(shù)x,不等式|x-3|-|x+2|>a恒成立,求實(shí)數(shù)a的取值范圍;
(2)若不等式|x-3|-|x+2|>a有解,求實(shí)數(shù)a的取值范圍;
(3)若方程|x-3|-|x+2|=a有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù),如:[1]=1,[1.3]=1,[-1.5]=-2,給出下列命題:
①若函數(shù)f(x)=[x]-x,則有f(x+1)=f(x);
②若函數(shù)f(x)=[x]-x,則f(x)的值域?yàn)椋?1,0];
③當(dāng)x∈[0,π]時(shí),方程[2sinx]=|
2
|的解集為[
π
6
,
6
];
④當(dāng)x∈[0,n)(n∈N+)時(shí),設(shè)函數(shù)g(x)=[x]的值域?yàn)锳n,記An中的元素個(gè)數(shù)為an,則數(shù)列{an}的前n項(xiàng)和Sn=
n(n+1)
2

其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過圓C:x2+y2+2x=0的圓心,且與直線3x+y-2=0垂直的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x|-1≤x≤4},若非空集合T滿足條件:(S∩T)?(S∪T),則集合T等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

入射光線射在直線l1:2x-y-3=0上,經(jīng)過x軸反射到直線l2上,再經(jīng)過y軸反射到直線l3上,則直線l3的一般式方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(x,y)滿足x-y+1=0,則當(dāng)
x2+y2+2x+10y+26
-
x2+y2-6y+9
取得最大值時(shí),點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

可導(dǎo)函數(shù)在閉區(qū)間的最大值必在(  )
A、取得極值點(diǎn)
B、導(dǎo)數(shù)為0的點(diǎn)
C、極值點(diǎn)或區(qū)間端點(diǎn)
D、區(qū)間端點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案