【題目】已知點(diǎn).若曲線上存在兩點(diǎn),使為正三角形,則稱型曲線.給定下列三條曲線:

;

;

其中型曲線的個(gè)數(shù)是

A.B.

C.D.

【答案】B

【解析】

對(duì)于①,A-11)到直線y=-x+3的距離為,若直線上存在兩點(diǎn)B,C,使ABC為正三角形,則|AB|=|AC|=,以A為圓心,以為半徑的圓的方程為(x+12+y-12=6,聯(lián)立
解得,或,后者小于0,所以對(duì)應(yīng)的點(diǎn)不在曲線上,所以①不是.
對(duì)于②,化為,圖形是第二象限內(nèi)的四分之一圓弧,此時(shí)連接A點(diǎn)與圓弧和兩坐標(biāo)軸交點(diǎn)構(gòu)成的三角形頂角最小為135°,所以②不是.
對(duì)于③,根據(jù)對(duì)稱性,若上存在兩點(diǎn)B、C使ABC構(gòu)成正三角形,則兩點(diǎn)連線的斜率為1,設(shè)BC所在直線方程為x-y+m=0,由題意知A到直線距離為直線被所截弦長(zhǎng)的倍,列方程解得m=-,所以曲線③是T型線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是雙曲線上的兩點(diǎn),線段的中點(diǎn)為,直線不經(jīng)過坐標(biāo)原點(diǎn)

1)若直線和直線的斜率都存在且分別為,求證:

2)若雙曲線的焦點(diǎn)分別為、,點(diǎn)的坐標(biāo)為,直線的斜率為,求由四點(diǎn)、、所圍成四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ4cosθ,直線C2的參數(shù)方程為t為參數(shù)).

1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;

2)若P1,0),直線C2與曲線C1相交于A,B兩點(diǎn),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家號(hào)召,打贏脫貧致富攻堅(jiān)戰(zhàn),武漢大學(xué)團(tuán)隊(duì)帶領(lǐng)湖北省大悟縣新城鎮(zhèn)熊灣村村民建立有機(jī)、健康、高端、綠色的蔬菜基地,并策劃生產(chǎn)、運(yùn)輸、銷售一體化的直銷供應(yīng)模式,據(jù)統(tǒng)計(jì),當(dāng)?shù)卮迕駜赡陼r(shí)間成功脫貧.蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市,每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且.若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),若購進(jìn)17份比購進(jìn)18份的利潤(rùn)的期望值大,則x的最小值是________.

8小時(shí)內(nèi)銷售量

15

16

17

18

19

20

21

頻數(shù)

10

x

16

16

15

13

y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象是自原點(diǎn)出發(fā)的一條折線,當(dāng))時(shí),該圖象是斜率為的線段,其中常數(shù),數(shù)列)定義.

1)若,求,

2)求的表達(dá)式及的解析式(不必求的定義域);

3)當(dāng)時(shí),求的定義域,并證明的圖象與的圖象沒有橫坐標(biāo)大于1的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右焦點(diǎn)分別為,,橢圓右頂點(diǎn)為,點(diǎn)在圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上,且位于第四象限,點(diǎn)在圓上,且位于第一象限,已知,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時(shí)間n1≤n≤30、nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n) 圖象中的點(diǎn)位于斜率為 5 和-3 的兩條直線上,兩直線交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.

(Ⅰ)f(n) 的表達(dá)式,及前m天的銷售總數(shù);

(Ⅱ)按以往經(jīng)驗(yàn),當(dāng)該專賣店銷售某款服裝的總數(shù)超過 400 件時(shí),市面上會(huì)流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時(shí),該款服裝將不再流行.試預(yù)測(cè)本款服裝在市面上流行的天數(shù)是否會(huì)超過 10 天?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),函數(shù),且函數(shù)是偶函數(shù),函數(shù)在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù).

(1)求函數(shù)的解析式;

(2)求實(shí)數(shù)的值;

(3)設(shè),問是否存在實(shí)數(shù),使得在區(qū)間上有最小值-2?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案