【題目】在直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)).若以直角坐標(biāo)系中的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點,求實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(,且).
(1)當(dāng)時,若對任意,恒成立,求實數(shù)的取值范圍;
(2)若,設(shè) ,是的導(dǎo)函數(shù),判斷的零點個數(shù),并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,. 臺體體積公式: , 其中分別為臺體上、下底面面積, 為臺體高.
(1)證明:直線 平面;
(2)若,, ,三棱錐的體積,求 該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于, 兩點,求與的面積之差的絕對值的最大值.(為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,……,后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求出物理成績低于50分的學(xué)生人數(shù);
(2)估計這次考試物理學(xué)科及格率(60分以上為及格);
(3)從物理成績不及格的學(xué)生中選x人,其中恰有一位成績不低于50分的概率為,求此時x的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)是偶函數(shù),設(shè)
(1)求的解析式;
(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;
(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),,已知曲線與在原點處的切線相同.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點在上,點在上,且點在斜邊上,已知, 米, 米, .設(shè)矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))
(1)試用表示,并求的取值范圍;
(2)求總造價關(guān)于面積的函數(shù);
(3)如何選取,使總造價最低(不要求求出最低造價)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學(xué)生總體情況,從中抽取了甲乙兩個小組樣本分?jǐn)?shù)的莖葉圖如圖所示.
5 | 6 | 5 | 8 | ||||||
6 | 0 | 1 | 3 | 6 | 2 | 4 | 6 | 9 | |
7 | 1 | 2 | 7 | 1 | 3 | ||||
8 | 0 | 1 | 8 | 1 | |||||
甲 | 乙 |
(1)分別求甲乙兩個小組成績的平均數(shù)與方差;
(2)分析比較甲乙兩個小組的成績;
(3)從甲組高于70分的同學(xué)中,任意抽取2名同學(xué),求恰好有一名同學(xué)的得分在[80,90)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com