【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,AP=AB=AC=a, ,PA⊥底面ABCD.
(1)求證:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一點(diǎn)E,使得二面角B﹣AE﹣D的平面角的余弦值為 ?若存在,求出 的值?若不存在,說明理由.

【答案】
(1)證明:在△ACD中,AC=a,CD=a,AD= a,

由勾股定理得:CD⊥AC

∵PA⊥底面ABCD,∴PA⊥CD,

AC面PAC,PA面PAC,PA∩AC=A

∴CD⊥面PAC

又∵CD面PCD

∴平面PCD⊥平面PAC


(2)解:(由(1)知:AB⊥AC,又PA⊥底面ABCD

∴以A為原點(diǎn),AB,AC,AP所在直線分別為x軸,y軸,z軸建立如圖所示坐標(biāo)系

則A(0,0,0),B(a,0,0),C(0,a,0),

D(﹣a,a,0),P(0,0,a)

假設(shè)點(diǎn)E存在,且λ= ,則 (xE,yE﹣a,zE)=λ(0,﹣a,a)

∴xE=0,yE=(1﹣λ)a,zE=λa

=(a,0,0) =(0,(1﹣λ)a,λa), =(﹣a,a,0)

設(shè)平面BAE的法向量為 =(x1,y1,z1),平面DAE的法向量為 =(x2,y2,z2),

,取y1=λ,得 ,

,取x2=λ,得 =(λ,λ,λ﹣1)

cos< >= = = ,

由題意:|cos< >|= = ,

整理得:3(2λ2﹣2λ+1)=2(3λ2﹣2λ+1),解得λ= ,

∴棱PC上存在一點(diǎn)E,使得二面角B﹣AE﹣D的平面角的余弦值為﹣ ,且此時λ=


【解析】(1)由勾股定理得:CD⊥AC,由線面垂直得PA⊥CD,從而CD⊥面PAC,由此能證明平面PCD⊥平面PAC.(2)以A為原點(diǎn),AB,AC,AP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.
【考點(diǎn)精析】利用平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是集合{x|x=3s+3t , s<t且s,t∈N}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項(xiàng)按照上小下大,左小右大的原則排成如圖的等腰直角三角形數(shù)表,則a15的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進(jìn)制數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,全書十八卷共八十一個問題,分為九類,每類九個問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求職”中提出了已知三角形三邊a,b,c求面積的公式,這與古希臘的海倫公式完成等價,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí),一為從隅,開平方得積.”若把以上這段文字寫成公式,即S= ,現(xiàn)有周長為10+2 的△ABC滿足sinA:sinB:sinC=2:3: ,則用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為4,3,則輸出v的值為(
A.20
B.61
C.183
D.548

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當(dāng)a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實(shí)數(shù)a,當(dāng)x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項(xiàng)為1的單調(diào)遞增的等比數(shù)列,且滿足a3 成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(
A.8
B.13
C.21
D.34

查看答案和解析>>

同步練習(xí)冊答案