【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設.
(1)求的值;
(2)若不等式在區(qū)間上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查,某商品在過去的20天內(nèi)的價格(單位:元)與銷售量(單位:件)均為時間(單位:天)的函數(shù),且價格滿足,銷售量滿足,其中, .
(1)請寫出該商品的日銷售額(單位:元)與時間(單位:天)的函數(shù)解析式;
(2)求該商品的日銷售額的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點與其短軸得一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于兩點,與軸, 軸分別相交于點合點,且,點時點關于軸的對稱點, 的延長線交橢圓于點,過點分別做軸的垂線,垂足分別為.
(1) 求橢圓的方程;
(2)是否存在直線,使得點平分線段?若存在,請求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側面底面, , , 分別為的中點,點在線段上.
(Ⅰ)求證: 平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當前,網(wǎng)購已成為現(xiàn)代大學生的時尚。某大學學生宿舍4人參加網(wǎng)購,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.
(1)求這4個人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),記,求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市理論預測2010年到2014年人口總數(shù)與年份的關系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程;
(2) 據(jù)此估計2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)求的極大值與極小值;
(3)寫出利用導數(shù)方法求函數(shù)極值點的步驟.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:
有明顯拖延癥 | 無明顯拖延癥 | 合計 | |
男 | 35 | 25 | 60 |
女 | 30 | 10 | 40 |
合計 | 65 | 35 | 100 |
(Ⅰ)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關,那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.
附:獨立性檢驗統(tǒng)計量,其中.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com