【題目】如圖所示,半圓弧所在平面與平面垂直,且上異于,的點,,,.

(1)求證:平面;

(2)若的中點,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)取的中點為,連接,利用勾股定理,證得,在利用面面垂直的性質,證得平面,最后利用線面垂直的判定定理,即可證得平面

2)以為坐標原點,分別以軸,軸,軸建立如圖所示的空間直角坐標系,求得平面和平面的一個法向量,利用向量的夾角公式,即可求解.

(1)取的中點為,連接

因為,所以,又,所以四邊形為平行四邊形,

,,所以為正方形,不妨設,

,,

所以,即,

又平面平面,平面平面,所以平面

平面,所以,

因為是半圓弧上異于,的點,所以,又,

所以平面;

(2)取的中點為,連接,則,所以,

的中點時,有,則,

因為平面平面,平面平面,所以平面,

為坐標原點,分別以軸,軸,軸建立如圖所示的空間直角坐標系,

由(1)知,,,,

, ,

是平面的一個法向量,則,即,

,則,,

是平面的一個法向量,則,即,

,則,,

所以

由圖可知所求二面角為鈍角,

所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)()的檢測數(shù)據(jù),結果統(tǒng)計如下:

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質量指數(shù)的關系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線恰有一個公共點.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線,過拋物線上點B作切線y軸于點

)求拋物線方程和切點的坐標;

)過點作拋物線的割線,在第一象限內的交點記為,,設y軸上一點,滿足,中點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四面體的表面積為,為棱的中點,球為該正四面體的外接球,則過點的平面被球所截得的截面面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的上運動,平面,且,點分別是、的中點.

(1)求證:

(2)若,求點平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實常數(shù),函數(shù)

(1)當時,求的單調區(qū)間;

(2)設,不等式的解集為,不等式的解集為,當時,是否存在正整數(shù),使得成立.若存在,試找出所有的m;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案