【題目】改革開放以來,我國農(nóng)村7億多貧困人口擺脫貧困,貧困發(fā)生率由1978年的下降到2018年底的,創(chuàng)造了人類減貧史上的中國奇跡,為全球減貧事業(yè)貢獻了中國智慧和中國方案.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例.2012年至2018年我國貧困發(fā)生率的數(shù)據(jù)如表:

年份(

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的7個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;

(2)設(shè)年份代碼,利用回歸方程,分析2012年至2018年貧困發(fā)生率的變化情況,并預(yù)測2019年的貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式為:,.

【答案】(1)(2)0.1%.

【解析】

1)設(shè)2012年至2015年貧困發(fā)生率分別為,,,均大于5%

設(shè)2016年至2018年貧困發(fā)生率分別為,,均小于5%,列出從2012年至2018年貧困發(fā)生率的7個數(shù)據(jù)中任選兩個,可能的情況,最后利用古典概型公式,求出概率;

(2)根據(jù)題意列出年份代碼與貧困發(fā)生率之間的關(guān)系,分別計算求出的值,代入公式,求出的值,求出回歸直線方程,并通過回歸直線方程預(yù)測2019年底我國貧困發(fā)生率.

(1)設(shè)2012年至2015年貧困發(fā)生率分別為,,,均大于5%

設(shè)2016年至2018年貧困發(fā)生率分別為,,,均小于5%

從2012年至2018年貧困發(fā)生率的7個數(shù)據(jù)中任選兩個,可能的情況如下:

、、、、

、、、

、、

、、

、

共有21種情況,

兩個都低于5%的情況:、、,共3種情況

所以,兩個都低于5%的概率為.

(2)由題意可得:

由上表可算得:,

,

,

所以,,

所以,線性回歸方程為

由以上方程:,所以在2012年至2018年貧困發(fā)生率在逐年下降,平均每年下降1.425%;

當(dāng)時,,

所以,可預(yù)測2019年底我國貧困發(fā)生率為0.1%.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點為,與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Ca0),過點P(-2,-4)的直線l的參數(shù)方程為t為參數(shù)),lC分別交于MN.

1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;

2)若|PM||MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有10000人,其中男生7500人,女生2500人,為調(diào)查該校學(xué)生每則平均體育運動時間的情況,采用分層抽樣的方法,收集200位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).調(diào)查部分結(jié)果如下列聯(lián)表:

男生

女生

總計

每周平均體育運動時間不超過4小時

35

每周平均體育運動時間超過4小時

30

總計

200

(1)完成上述每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”;

(2)已知在被調(diào)查的男生中,有5名數(shù)學(xué)系的學(xué)生,其中有2名學(xué)生每周平均體育運動時間超過4小時,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰有1人“每周平均體育運動時間超過4小時”的概率.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,若過點且斜率為1的直線與拋物線交于 兩點,且.

(1)求拋物線的方程;

(2)若平行于的直線與拋物線相切于點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線經(jīng)過點,且傾斜角為

(1)寫出直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓相交于兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案