【題目】袋子中有四張卡片,分別寫有學(xué)、習(xí)、強(qiáng)、國(guó)四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“學(xué)”“習(xí)”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)01,2,3四個(gè)隨機(jī)數(shù),分別代表學(xué)、習(xí)、強(qiáng)、國(guó)這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

210

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A.B.C.D.

【答案】C

【解析】

18組隨機(jī)數(shù)中,利用列舉法求出事件A發(fā)生的隨機(jī)數(shù)有共6個(gè),由此能估計(jì)事件A發(fā)生的概率.

18組隨機(jī)數(shù)中,利用列舉法求出事件A發(fā)生的隨機(jī)數(shù)有210,021001,130031,103,共6個(gè),估計(jì)事件A發(fā)生的概率為.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID19),簡(jiǎn)稱“新冠肺炎”.下圖是2020115日至124日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.

為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)115日至124日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說明理由)

2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

3)以下是125日至129日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:

時(shí)間

125

126

127

128

129

累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)

1975

2744

4515

5974

7111

(。┊(dāng)125日至127日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?

(ⅱ)2020124日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?

附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

參考數(shù)據(jù):其中,.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中是自然對(duì)數(shù)的底數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路,和山區(qū)邊界的直線型公路,以,所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn).

1)設(shè)公路軸,軸分別為兩點(diǎn),若公路的斜率為-1,求的長(zhǎng);

2)在(1)條件下,測(cè)得四邊形中,,千米,千米,求應(yīng)開鑿的隧道的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.

1)求的解析式;

2)若方程有兩個(gè)實(shí)根,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,),數(shù)列滿足:,且).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)求數(shù)列的前項(xiàng)和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為是參數(shù))以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的普通方程和的直線直角坐標(biāo)方程;

2)設(shè)直線軸交點(diǎn)分別是,點(diǎn)是圓上的動(dòng)點(diǎn),求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)過點(diǎn)作直線的垂線交曲線兩點(diǎn)(軸上方),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案