已知不等式|a-2|≤x2+2y2+3z2對(duì)滿足x+y+z=1的一切實(shí)數(shù)x,y,z都成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):二維形式的柯西不等式
專題:選作題,不等式
分析:不等式|a-2|≤x2+2y2+3z2恒成立,只要|a-2||≤(x2+2y2+3z2min,利用柯西不等式求出x2+2y2+3z2的最小值,再解關(guān)于a的絕對(duì)值不等式即可.
解答: 解:因?yàn)橐阎獂,y,z是實(shí)數(shù),且x+y+z=1,
根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2
故有(x2+2y2+3z2)(1+
1
2
+
1
3
)≥(x+y+z)2
故x2+2y2+3z2
6
11
,當(dāng)且僅當(dāng)x=
6
11
,y=
3
11
,z=
2
11
時(shí)取等號(hào),
∵不等式|a-2|≤x2+2y2+3z2對(duì)滿足x+y+z=1的一切實(shí)數(shù)x,y,z都成立,
∴|a-2|≤
6
11
,
16
11
≤a≤
28
11
點(diǎn)評(píng):本題主要考查了柯西不等式求解最值的應(yīng)用及函數(shù)的恒成立與最值的相互轉(zhuǎn)化關(guān)系的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=4
2
sin(θ+
π
4
).現(xiàn)以點(diǎn)O為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=-2+
1
2
t
y=-3+
3
2
t
(t為參數(shù)).
(I)寫出直線l和曲線C的普通方程;
(Ⅱ)設(shè)直線l和曲線C交于A,B兩點(diǎn),定點(diǎn)P(-2,-3),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x1)=
2
x+1
,fn+1(x)=f1(fn(x)),且an=
fn(0)-1
fn(0)+2

(1)求證:{an}為等比數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=
(-1)n-1
2an
,g(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*),求證:g(bn)≥
n+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市制定“五一”期間促銷方案,當(dāng)天一次性購物消費(fèi)額滿1000元的顧客可參加“摸球抽獎(jiǎng)贏代金券”活動(dòng),規(guī)則如下:
①每位參與抽獎(jiǎng)的顧客從一個(gè)裝有2個(gè)紅球和4個(gè)白球的箱子中逐次隨機(jī)摸球,一次只摸出一個(gè)球;
②若摸出白球,將其放回箱中,并再次摸球;若摸出紅球則不放回,工作人員往箱中補(bǔ)放一白球后,再次摸球;
③如果連續(xù)兩次摸出白球或兩個(gè)紅球全被摸出,則停止摸球.
停止摸球后根據(jù)摸出的紅球個(gè)數(shù)領(lǐng)取代金券,代金券數(shù)額Y與摸出的紅球個(gè)數(shù)x滿足如下關(guān)系:Y=144+72x(單位:元).
(Ⅰ)求一位參與抽獎(jiǎng)?lì)櫩颓『妹蛉渭赐V姑虻母怕剩?br />(Ⅱ)求隨機(jī)變量Y的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx.
(1)若a=
1
2
,求f(x)在[1,+∞)上的最小值;
(2)若a≠
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)已知函數(shù)h(x)=(
1
2
a-1)x2-x+(2a+2)lnx,若h(x)=f(x)有唯一解,求正數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2cosα+2
y=2sinα
(α為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,則直線l被曲線C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P1(x1,x2),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若sin(θ+
π
4
)=
3
5
,則的x1x2+y1y2值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線C1
x=2+
3
5
t
y=
4
5
t
(0<a<1為參數(shù))和曲線C2:ρsin2θ=2cosθ相交于A、B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,則點(diǎn)M的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(α+β)cosβ-cos(α+β)sinβ=0,則sin(α+2β)+sin(α-2β)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案