【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),設直線與曲線交于 兩點.

(Ⅰ)求線段的長;

(Ⅱ)已知點在曲線上運動,當的面積最大時,求點的坐標及的最大面積.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:將曲線的參數(shù)方程化為普通方程,與直線方程聯(lián)立,求出 點的坐標,利用兩點間的距離公式求解即可;設過點且與直線平行的直線方程.相切時, 的最大面積求出 點坐標,根據(jù)點到直線的距離公式及三角形面積公式可得結果.

試題解析:(Ⅰ)曲線的普通方程為.

將直線代入中消去得, .

解得.

所以點, ,

所以 .

(Ⅱ)在曲線上求一點,使的面積最大,則點到直線的距離最大.

設過點且與直線平行的直線方程.

代入整理得, .

,解得.

代入方程,解得.

易知當點的坐標為時, 的面積最大.

且點到直線的距離為 .

的最大面積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2x
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52x+3,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)求證: ;

(3)求證:當時, , 恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓是大于的常數(shù))的左、右頂點分別為、,點是橢圓上位于軸上方的動點,直線、與直線分別交于兩點(設直線的斜率為正數(shù)).

Ⅰ)設直線、的斜率分別為, ,求證為定值.

Ⅱ)求線段的長度的最小值.

Ⅲ)判斷存在點,使得是等邊三角形的什么條件?(直接寫出結果)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

(Ⅰ)已知,證明: ;

(Ⅱ)若對任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一段圓錐曲線,曲線與兩個坐標軸的交點分別是, , .

Ⅰ)若該曲線表示一個橢圓,設直線過點且斜率是,求直線與這個橢圓的公共點的坐標.

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面給出了四個類比推理:

為實數(shù),若;類比推出: 為復數(shù),若.

若數(shù)列是等差數(shù)列, ,則數(shù)列也是等差數(shù)列;類比推出:若數(shù)列是各項都為正數(shù)的等比數(shù)列, ,則數(shù)列也是等比數(shù)列.

; 類比推出:若為三個向量,則.

④ 若圓的半徑為,則圓的面積為;類比推出:若橢圓的長半軸長為,短半軸長為,則橢圓的面積為.上述四個推理中,結論正確的是( )

A. ① ② B. ② ③ C. ① ④ D. ② ④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,過點作圓的切線,切點分別為 ,直線恰好經(jīng)過橢圓的右頂點和上頂點.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,過橢圓的右焦點作兩條互相垂直的弦, ,設, 的中點分別為 ,證明:直線必過定點,并求此定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知側棱垂直于底面的四棱柱中, , , ,

(1)若是線段上的點且滿足,求證:平面平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案