【題目】如圖是一段圓錐曲線,曲線與兩個坐標(biāo)軸的交點分別是 , .

Ⅰ)若該曲線表示一個橢圓,設(shè)直線過點且斜率是,求直線與這個橢圓的公共點的坐標(biāo).

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

【答案】(Ⅰ) , (Ⅱ) .

【解析】試題分析:

()由題意求得橢圓方程為,聯(lián)立直線方程與橢圓方程可得直線與橢圓的公共點的坐標(biāo)為,

()輸出拋物線方程的兩點式,然后結(jié)合題意可得拋物線方程為.

試題解析:

(Ⅰ)若該曲線表示一個橢圓,則橢圓方程為,

∵直線且斜率為,

∴直線的方程為: ,

,代入,得,

化簡得: ,解得,

代入,得

故直線與橢圓的公共點的坐標(biāo)為,

(Ⅱ)若該曲線是一段拋物線,則可設(shè)拋物線方程為:

代入得,解得: ,

∴拋物線的方程為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點的左焦點.橢圓的離心率為,拋物線與橢圓交于軸上方一點,連接并延長其交于點 上一動點,且在之間移動.

(1)當(dāng)取最小值時,求的方程;

(2)若的邊長恰好是三個連續(xù)的自然數(shù),當(dāng)面積取最大值時,求面積最大值以及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值和最小值;

(2)若在區(qū)間內(nèi),函數(shù)的圖象恒在直線下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點,定直線 ,動圓過點,且與直線相切.

(Ⅰ)求動圓的圓心軌跡的方程;

(Ⅱ)過點的直線與曲線相交于, 兩點,分別過點, 作曲線的切線, ,兩條切線相交于點,求外接圓面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),設(shè)直線與曲線交于 兩點.

(Ⅰ)求線段的長;

(Ⅱ)已知點在曲線上運動,當(dāng)的面積最大時,求點的坐標(biāo)及的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為,設(shè)直線的斜率是,且與橢圓交于, 兩點.

Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.

Ⅱ)若直線軸上的截距是,求實數(shù)的取值范圍.

Ⅲ)以為底作等腰三角形,頂點為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,公差d≠0,其中 ,…, 恰為等比數(shù)列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年下半年起六安市區(qū)商品房價不斷上漲,為了調(diào)查研究六安城區(qū)居民對六安商品房價格承受情況,寒假期間小明在六安市區(qū)不同小區(qū)分別對50戶居民家庭進行了抽查,并統(tǒng)計出這50戶家庭對商品房的承受價格(單位:元/平方),將收集的數(shù)據(jù)分成, , , 五組(單位:元/平方),并作出頻率分布直方圖如圖:

(Ⅰ)試根據(jù)頻率分布直方圖估計出這50戶家庭對商品房的承受價格平均值(單位:元/平方);

(Ⅱ)為了作進一步調(diào)查研究,小明準(zhǔn)備從承受能力超過4000元/平方的居民中隨機抽出2戶進行再調(diào)查,設(shè)抽出承受能力超過8000元/平方的居民為戶,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,a,b,c分別是角A,B,C的對邊,且a=80,b=100,A= ,則此三角形是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.銳角或鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案