(2012•威海二模)已知命題p:函數(shù)y=2-ax+1恒過(1,2)點;命題q:若函數(shù)f(x-1)為偶函數(shù),則f(x)的圖象關于直線x=1對稱,則下列命題為真命題的是(  )
分析:復合命題的真假判定,解決的辦法是先判斷組成復合命題的簡單命題的真假,再根據(jù)真值表進行判斷.
解答:解:函數(shù)y=2-ax+1的圖象可看作把y=ax的圖象先沿軸反折,再左移1各單位,最后向上平移2各單位得到,而y=ax的圖象恒過(0,1),所以函數(shù)y=2-ax+1恒過(-1,1)點,所以命題
p假,則¬p真.
函數(shù)f(x-1)為偶函數(shù),則其對稱軸為x=0,而函數(shù)f(x)的圖象是把y=f(x-1)向左平移了1各單位,所以f(x)的圖象關于直線x=-1對稱,所以命題q假,則命題¬q真.
綜上可知,命題¬p∧¬q為真命題.
故選B
點評:復合命題的真值表:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)如圖,菱形ABCD的邊長為2,∠A=60°,M為DC的中點,若N為菱形內(nèi)任意一點(含邊界),則
AM
AN
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)在等比數(shù)列{an}中,a2=
1
4
,a3a6=
1
512
.設bn=log2
a
2
n
2•log2
a
2
n+1
2
,
T
 
n
為數(shù)列{bn}的前n項和.
(Ⅰ)求an和Tn;
(Ⅱ)若對任意的n∈N*,不等式λTn<n-2(-1)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)如圖,邊長為2的正方形內(nèi)有一不規(guī)則陰影部分,隨機向正方形內(nèi)投入200粒芝麻,恰有60粒落入陰影部分,則不規(guī)則圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)某市職教中心組織廚師技能大賽,大賽依次設基本功(初賽)、面點制作(復賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復賽、決賽的概率分別是
3
4
2
3
,
1
4
且各輪次通過與否相互獨立.
(I)設該選手參賽的輪次為ξ,求ξ的分布列和數(shù)學期望;
(Ⅱ)對于(I)中的ξ,設“函數(shù)f(x)=3sin
x+ξ
2
π(x∈R)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•威海二模)某商場調(diào)查旅游鞋的銷售情況,隨機抽取了部分顧客的購鞋尺寸,整理得如下頻率分布直方圖,其中直方圖從左至右的前3個小矩形的面積之比為1:2:3,則購鞋尺寸在[39.5,43.5)內(nèi)的顧客所占百分比為
55%
55%

查看答案和解析>>

同步練習冊答案