數(shù)學(xué)英語物理化學(xué) 生物地理
數(shù)學(xué)英語已回答習(xí)題未回答習(xí)題題目匯總試卷匯總
【題目】一個(gè)正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
【答案】見解析
【解析】解:(1)點(diǎn)F,G,H的位置如圖所示.
(2)證明:連接BD,設(shè)O為BD的中點(diǎn),連接OM,OH,AC,BH,MN。
∵M(jìn),N分別是BC,GH的中點(diǎn),
∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,
∴OM∥NH,OM=NH,
則四邊形MNHO是平行四邊形,∴MN∥OH,
又∵M(jìn)N平面BDH,OH平面BDH,
∴MN∥平面BDH。
(3)由(2)知OM∥NH,OM=NH,連接GM,MH,過點(diǎn)M,N,H的平面就是平面GMH,它將正方體分割為兩個(gè)同高的棱柱,高都是GH,底面分別是四邊形BMGF和三角形MGC,
體積比等于底面積之比,即3∶1。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為圓的直徑,點(diǎn)在圓上, ,矩形所在的平面與圓所以的平面互相垂直,已知.
(1)求證:平面平面;
(2)當(dāng)的長(zhǎng)為何值時(shí),平面與平面所成的銳二面角的大小為?
【題目】一個(gè)多面體的直觀圖及三視圖如圖所示,分別是的中點(diǎn).
(I)求證:平面;
(II)求二面角的余弦值.
【題目】設(shè)函數(shù)在處取最小值.
(1)求的值,并化簡(jiǎn) ;
(2)在ABC中,分別是角A,B, C的對(duì)邊,已知,求角C.
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.
【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說明理由.
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.
(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出與之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式.
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;(2)若對(duì)任意的,都有成立,求正數(shù)的取值范圍.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)