18.寫出數(shù)列$-\frac{1}{2}$,$\frac{4}{3}$,$-\frac{9}{4}$,$\frac{16}{5}$,…的一個(gè)通項(xiàng)公式an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$..

分析 從符號(hào)、分子與分母上考慮即可得出.

解答 解:數(shù)列$-\frac{1}{2}$,$\frac{4}{3}$,$-\frac{9}{4}$,$\frac{16}{5}$,…的一個(gè)通項(xiàng)公式為:an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$.
故答案為:an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$.

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=cos(2ωx-\frac{π}{3})-2{cos^2}$ωx+2的圖象的對(duì)稱中心到對(duì)稱軸的最短距離為$\frac{π}{4}$.
(1)求ω的值和函數(shù)f(x)的圖象的對(duì)稱中心、對(duì)稱軸方程.
(2)求函數(shù)f(x)在區(qū)間$[{-\frac{π}{12},\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.底面為菱形的直棱柱ABCD-A1B1C1D1中,E、F分別為棱A1B1、A1D1的中點(diǎn).
(Ⅰ)在圖中作一個(gè)平面α,使得BD?α,且平面AEF∥α,(不必給出證明過(guò)程,只要求作出α與直棱柱ABCD-A1B1C1D1的截面.)
(II)若AB=AA1=2,∠BAD=60°,求平面AEF與平面α的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若從[1,4]上任取一個(gè)實(shí)數(shù)作正方形的邊長(zhǎng),則該正方形的面積大于4的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在等比數(shù)列{an}中,若a2=5,a4=20,則a6=80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)P(x,y)滿足線性約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,點(diǎn)M(3,1),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OM}$•$\overrightarrow{OP}$的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}滿足:an2-an-an+1+1=0,a1=2
(1)求a2,a3
(2)證明數(shù)列為遞增數(shù)列;
 (3)求證:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為10π+60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若二項(xiàng)式${({a{x^2}-\frac{1}{{\sqrt{x}}}})^6}({a>0})$展開(kāi)式中的含x2的項(xiàng)的系數(shù)為60.則$\int{\begin{array}{l}a\\{-1}\end{array}}({{x^2}-2x})dx$=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案