8.若二項(xiàng)式${({a{x^2}-\frac{1}{{\sqrt{x}}}})^6}({a>0})$展開式中的含x2的項(xiàng)的系數(shù)為60.則$\int{\begin{array}{l}a\\{-1}\end{array}}({{x^2}-2x})dx$=0.
分析 根據(jù)二項(xiàng)式展開式的通項(xiàng)寫出展開式中x2項(xiàng)的系數(shù),列方程求出a的值,再求定積分的值.
解答 解:設(shè)${({a{x^2}-\frac{1}{{\sqrt{x}}}})^6}$展開式的通項(xiàng)為:
${T_{k+1}}=C_6^k{({a{x^2}})^{6-k}}{({-{x^{-\frac{1}{2}}}})^k}=C_6^k{a^{6-k}}{({-1})^k}{x^{12-\frac{5}{2}k}}$,
令$12-\frac{5}{2}k=2$,求得k=4;
于是展開式中x2項(xiàng)的系數(shù)為$C_6^k{a^2}=15{a^2}$,
則15a2=60,
注意到a>0,求得a=2;
所以${∫}_{-1}^{a}$(x2-2x)dx=${∫}_{-1}^{2}$(x2-2x)dx
=($\frac{1}{3}$x3-x2)${|}_{-1}^{2}$
=($\frac{1}{3}$×23-22)-[$\frac{1}{3}$×(-1)3-(-1)2]
=-$\frac{4}{3}$+$\frac{4}{3}$
=0.
故答案為:0.
點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式的應(yīng)用問題,也考查了定積分的計(jì)算問題,是基礎(chǔ)題目.