【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴控疫情傳播,做好重點人群的預(yù)防工作,某地區(qū)共統(tǒng)計返鄉(xiāng)人員人,其中歲及以上的共有人.這人中確診的有名,其中歲以下的人占.
(1)請將下面的列聯(lián)表補充完整,并判斷是否有%的把握認為是否確診患新冠肺炎與年齡有關(guān);
確診患新冠肺炎 | 未確診患新冠肺炎 | 合計 | |
50歲及以上 | 40 | ||
50歲以下 | |||
合計 | 10 | 100 |
(2)為了研究新型冠狀病毒的傳染源和傳播方式,從名確診人員中隨機抽出人繼續(xù)進行血清的研究,表示被抽取的人中歲以下的人數(shù),求的分布列以及數(shù)學期望.
參考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數(shù)列{}的前n項和為Sn,則下列選項中與S2019的值最接近的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線E:(,)的左、右焦點分別為,,已知點為拋物線C:的焦點,且到雙曲線E的一條漸近線的距離為,又點P為雙曲線E上一點,滿足.則
(1)雙曲線的標準方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面四邊形中,E,F是,中點,,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )
A.平面B.異面直線與所成的角為90°
C.異面直線與所成的角為60°D.直線與平面所成的角為30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點A作斜率為的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知點P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q的坐標,若不存在,說明理由;
(3)若過點O作直線l的平行線交橢圓C于點M,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分別是AC,PB的中點.
(1)證明:EF∥平面PCD;
(2)求證:面PBD⊥面PAC;
(3)若PA=AB,求PD與平面PAC所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,,,為棱上的動點.
(1)若為的中點,求證:平面;
(2)若平面平面ABC,且是否存在點,使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:極坐標與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com