某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于105的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為甲配方和乙配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到如圖所示試驗結(jié)果.
(1)分別估計用甲配方,乙配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用乙配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標(biāo)值t的關(guān)系式為y=
-3 ,t<95
3 , 95≤t<105
5, t≥105
,從用乙配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元)求X的分布列及數(shù)學(xué)期望.(以試驗結(jié)果中質(zhì)量指標(biāo)值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標(biāo)值落入相應(yīng)組的概率)
考點:離散型隨機(jī)變量的期望與方差,分段函數(shù)的應(yīng)用
專題:概率與統(tǒng)計
分析:(1)由試驗結(jié)果知,用甲配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為0.28,用乙配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為0.42,由此能估計用甲配方,乙配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率.
(2)用乙配方生產(chǎn)的100件產(chǎn)品中,其質(zhì)量指標(biāo)值落入?yún)^(qū)間[90,95),[95,105),[105,115)的頻率分別為0.08,0.5,0.42,P(X=-3)=0.08,P(X=3)=0.5,P(X=5)=0.42,由此能求出X的分布列及數(shù)學(xué)期望.
解答: 解:(1)由試驗結(jié)果知,用甲配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為0.28,
∴甲配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率為0.28.
由試驗結(jié)果知,用乙配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為0.42,
∴乙配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率為0.42.
(2)用乙配方生產(chǎn)的100件產(chǎn)品中,
其質(zhì)量指標(biāo)值落入?yún)^(qū)間[90,95),[95,105),[105,115)的頻率
分別為0.08,0.5,0.42,
∴P(X=-3)=0.08,
P(X=3)=0.5,
P(X=5)=0.42,
∴X的分布列為:
 X-3 3 5
 P 0.08 0.50.42 
EX=-3×0.08+3×0.5+5×0.42=3.36.
點評:本題考查估計值的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時要認(rèn)真審題,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上是增函數(shù),g(x)在R上是減函數(shù).求證:函數(shù)F(x)=f(x)-g(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(1)求f(x)的最小值;
(2)當(dāng)a=2時,求證:ln(n+1)+2
n
i+1
i
i+1
>nln(2e)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0;命題q:實數(shù)x滿足2<x≤3.
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知曲線C1
x2
3
+
y2
4
=1,以O(shè)為極點,x軸的正半軸極軸,取相同的單位長度建立極坐標(biāo)系,直線l的方程為:ρ(2cosθ-sinθ)=6.
(1)試寫出直線l的直角坐標(biāo)方程和曲線C1的參數(shù)方程;
(2)在曲線C1上求一點P,使點P到直線l的距離最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}和數(shù)列{bn}(n∈N+)由下列條件確定:
①a1<0,b1>0;
②當(dāng)k≥2時,ak與bk滿足如下條件:當(dāng)
ak-1+bk-1
2
≥0時,ak=ak-1,bk=
ak-1+bk-1
2
;當(dāng)
ak-1+bk-1
2
<0時,ak=
ak-1+bk-1
2
,bk=bk-1

解答下列問題:
(Ⅰ)證明數(shù)列{ak-bk}是等比數(shù)列;
(Ⅱ)求數(shù)列{n(bn-an)}的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三個同學(xué)同時報名參加某重點高校2014年自主招生,高考前自主招生的程序為審核材料和文化測試,只有審核過關(guān)后才能參加文化測試,文化測試合格者即可獲得自主招生入選資格.因為甲,乙,丙三人各有優(yōu)勢,甲,乙,丙三人審核材料過關(guān)的概率分別為
1
2
,
3
5
2
5
,審核過關(guān)后,甲,乙,丙三人文化測試合格的概率分別為
3
5
,
1
2
,
3
4

(Ⅰ)求甲,乙,丙三人中只有一人獲得自主招生入選資格的概率;
(Ⅱ)設(shè)甲,乙,丙三人中材料審核過關(guān)的人數(shù)為隨機(jī)變量X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
,a為常數(shù),若a=
9
2
,求函數(shù)f(x)在(1,e)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρ(cosθ-sinθ)=1與直線ρcosθ=1的夾角大小為
 

查看答案和解析>>

同步練習(xí)冊答案