【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

【答案】(1);(2)廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.

【解析】

1)由不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,可求k的值,再求出每件產(chǎn)品銷售價格的代數(shù)式,則利潤(萬元)表示為年促銷費用(萬元)的函數(shù)可求.

(2)由(1)得,再根據(jù)均值不等式可解.注意取等號.

(1)由題意知,當時,

所以,

每件產(chǎn)品的銷售價格為元.

所以2020年的利潤

(2)由(1)知,,

當且僅當,即時取等號,

該廠家2020年的促銷費用投入3萬元時,廠家的利潤最大,為21萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中,三個內(nèi)角的對邊分別為

1)若的等差中項,的等比中項,求證:為等邊三角形;

2)若為銳角三角形,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、分別是橢圓的左、右焦點.若是該橢圓上的一個動點,的最大值為1.

(1)求橢圓的方程

(2)設直線與橢圓交于兩點,關于軸的對稱點為(不重合)則直線軸是否交于一個定點?若是請寫出定點坐標,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知參加某項活動的六名成員排成一排合影留念,且甲乙兩人均在丙領導人的同側(cè),則不同的排法共有( )

A. 240種 B. 360種 C. 480種 D. 600種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,、分別為的中點,,如圖.

1)若交平面,證明:、三點共線;

2)線段上是否存在點,使得平面平面,若存在確定的位置,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且直線經(jīng)過曲線的左焦點

(1)求的值及直線的普通方程;

(2)設曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上有定義,要使函數(shù)有定義,則a的取值范圍為

A.B.C.;D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意的,總存在使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店經(jīng)營的某種消費品的進價為每件14元,月銷售量(百件)與每件的銷售價格(元)的關系如圖所示,每月各種開支2 000元.

(1)寫出月銷售量(百件)關于每件的銷售價格(元)的函數(shù)關系式.

(2)寫出月利潤(元)與每件的銷售價格(元)的函數(shù)關系式.

(3)當該消費品每件的銷售價格為多少元時,月利潤最大?并求出最大月利潤.

查看答案和解析>>

同步練習冊答案