【題目】已知參加某項活動的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導(dǎo)人的同側(cè),則不同的排法共有( )
A. 240種 B. 360種 C. 480種 D. 600種
【答案】C
【解析】分析:本題屬于有限制條件的排列問題,解題時可按照領(lǐng)導(dǎo)丙的位置分為6類,求出每一類的排法后再根據(jù)分類加法計數(shù)原理求解總的排法.
詳解:用分類討論的方法解決.如圖中的6個位置,
1 | 2 | 3 | 4 | 5 | 6 |
①當領(lǐng)導(dǎo)丙在位置1時,不同的排法有種;
②當領(lǐng)導(dǎo)丙在位置2時,不同的排法有種;
③當領(lǐng)導(dǎo)丙在位置3時,不同的排法有種;
④當領(lǐng)導(dǎo)丙在位置4時,不同的排法有種;
⑤當領(lǐng)導(dǎo)丙在位置5時,不同的排法有種;
⑥當領(lǐng)導(dǎo)丙在位置1時,不同的排法有種.
由分類加法計數(shù)原理可得不同的排法共有480種.
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.某品牌公司一直默默拓展海外市場,在海外設(shè)了多個分支機構(gòu),現(xiàn)需要國內(nèi)公司外派大量中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從中青年員工中隨機調(diào)查了位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
中年員工 | |||
青年員工 | |||
合計 |
由并參照附表,得到的正確結(jié)論是
附表:
0.10 | 0.01 | 0.001 | |
2.706 | 6.635 | 10.828 |
A. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡有關(guān)”;
B. 在犯錯誤的概率不超過10%的前提下,認為 “是否愿意外派與年齡無關(guān)”;
C. 有99% 以上的把握認為“是否愿意外派與年齡有關(guān)”;
D. 有99% 以上的把握認為“是否愿意外派與年齡無關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙、丙、丁、戊、己6人.(以下問題用數(shù)字作答)
(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的安排方法?
(2)將這6人作為輔導(dǎo)員全部安排到3項不同的活動中,求每項活動至少安排1名輔導(dǎo)員的方法總數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當時恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個解,求出實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當時,.
(1)求及的值;
(2)求函數(shù)在上的解析式;
(3)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》第八章“方程”問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?“如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600錢.問牛、羊、豬的價格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______錢.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當時,
①若曲線與直線相切,求c的值;
②若曲線與直線有公共點,求c的取值范圍.
(2)當時,不等式對于任意正實數(shù)x恒成立,當c取得最大值時,求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com