已知cos(θ+
π
4
)=-
10
10
,θ∈(0,
π
2
),則sin(2θ-
π
3
)=
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由題意可得θ+
π
4
∈(
π
4
,
4
),sin(θ+
π
4
)=
3
10
10
,再利用誘導(dǎo)公式、二倍角公式求得sin2θ=-cos(2θ+
π
2
)的值、cos2θ=sin2(θ+
π
4
)的值,從而求得sin(2θ-
π
3
)=sin2θcos
π
3
-cos2θsin
π
3
 的值.
解答: 解:∵cos(θ+
π
4
)=-
10
10
,θ∈(0,
π
2
),
∴θ+
π
4
∈(
π
4
4
),sin(θ+
π
4
)=
3
10
10

∴sin2θ=-cos(2θ+
π
2
)=1-2cos2(θ+
π
4
)
=
4
5
,
cos2θ=sin2(θ+
π
4
)=2sin(θ+
π
4
)cos(θ+
π
4
)=-
3
5

sin(2θ-
π
3
)=sin2θcos
π
3
-cos2θsin
π
3
=
2
5
+
3
3
10
=
4+3
3
10
,
故答案為:
4+3
3
10
點(diǎn)評:本題主要考查兩角和差的三角公式、二倍角公式、誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x+5y≤60,5x+3y≤40,x∈N,y∈N,求Z=200x+150y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C過定點(diǎn)M(0,2),且在x軸上截得弦長為4.設(shè)該動圓圓心的軌跡為曲線C.
(Ⅰ)求曲線C方程;
(Ⅱ)點(diǎn)A為直線l:x-y-2=0上任意一點(diǎn),過A作曲線C的切線,切點(diǎn)分別為P、Q,△APQ面積的最小值及此時點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)為F(1,0),A、B是橢圓C的左、右頂點(diǎn),P是橢圓C上異于A、B的動點(diǎn),且△APB面積的最大值為2
3

(1)求橢圓C的方程;
(2)直線AP與直線x=2交于點(diǎn)D,證明:以BD為直徑的圓與直線PF相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x+2
,x∈(
1
2
,1]
-
1
2
x+
1
4
,x∈[0,
1
2
]
,g(x)=asin(
π
3
x+
2
)-2a+2(a>0)
,給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)?span id="2fmvwkl" class="MathJye">[0,
1
3
];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對任意a>0,方程f(x)=g(x)在[0,1]內(nèi)恒有解;
④若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是
5
9
≤a≤
4
5

其中所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程|logax|=||x-3|-1|有三解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:①5>4或4>5;②9≥3;③命題“若a>b,則a+c>b+c”的否命題;④命題“矩形的兩條對角線相等”的逆命題.其中假命題的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
.
ax1
1x+1
.
<0對任意x∈R恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)P與點(diǎn)F2關(guān)于直線y=
bx
a
對稱,則該雙曲線的離心率為( 。
A、
5
2
B、
5
C、
2
D、2

查看答案和解析>>

同步練習(xí)冊答案