分析 線段AB是過拋物線x2=y焦點(diǎn)F的弦,過A,B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).N點(diǎn)在拋物線的準(zhǔn)線上.根據(jù)拋物線的定義知:NF=NP,∴現(xiàn)$\frac{|NP|}{|NF|}$是一個(gè)定值1.
解答 解:線段AB是過拋物線x2=y焦點(diǎn)F的弦,過A,B兩點(diǎn)分別作此拋物線的切線,兩切線相交于N點(diǎn).N點(diǎn)在拋物線的準(zhǔn)線上.下面證明
證明:由拋物線x2=y,得其焦點(diǎn)坐標(biāo)為F(0,$\frac{1}{4}$).
設(shè)A(x1,x12),B(x2,x22),
直線l:y=kx+$\frac{1}{4}$代入拋物線x2=y得:x2-kx-$\frac{1}{4}$=0.
∴x1x2=-$\frac{1}{4}$…①.
又拋物線方程為:y=x2,
求導(dǎo)得y′=2x,
∴拋物線過點(diǎn)A的切線的斜率為2x1,切線方程為y-x12=2x1(x-x1)…②
拋物線過點(diǎn)B的切線的斜率為2x2,切線方程為yx22-=2x2(x-x2)…③
由①②③得:y=-$\frac{1}{4}$.
∴P的軌跡方程是y=-$\frac{1}{4}$,即N在拋物線的準(zhǔn)線上;
根據(jù)拋物線的定義知:NF=NP,∴$\frac{|NP|}{|NF|}$是一個(gè)定值1.
故答案為:1
點(diǎn)評 本題考查了拋物線的性質(zhì),對運(yùn)算能力的要求比較高,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 既有最大值又有最小值 | B. | 有最大值沒有最小值 | ||
C. | 有最小值沒有最大值 | D. | 既沒有最大值也沒有最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com