【題目】如圖,在空間四面體中, ⊥平面,,且

(1)證明:平面⊥平面;

(2)求四面體體積的最大值,并求此時(shí)二面角的余弦值

【答案】(1)見(jiàn)解析;(2),

【解析】

(1)由勾股定理可得由線(xiàn)面垂直的性質(zhì)可得,由線(xiàn)面垂直的判定定理可得從而可得結(jié)果;(2)設(shè),則,

由棱錐的體積公式求得棱錐的體積,利用導(dǎo)數(shù)可得體積的最大值;以為原點(diǎn),所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系,利用向量垂直數(shù)量積為零列方程求得平面與平面的法向量利用空間向量夾角余弦公式求解即可.

(1),

、

故有平面⊥平面

(2)設(shè),則

四面體的體積

,故單增,在單減

易知時(shí)四面體的體積最大,且最大值是

為原點(diǎn),所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系

設(shè)平面的法向量為 則由

,得平面的一個(gè)法向量為

同理可得平面的一個(gè)法向量

由于是銳二面角,故所求二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為常數(shù)).

(1)若函數(shù)與函數(shù)處有相同的切線(xiàn),求實(shí)數(shù)的值;

2)若,且,證明: ;

3)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn)、,并且直線(xiàn)平分圓.

1)求圓的方程;

2)若過(guò)點(diǎn),且斜率為的直線(xiàn)與圓有兩個(gè)不同的交點(diǎn).

i)求實(shí)數(shù)的取值范圍;

ii)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)要完成下列三項(xiàng)抽樣調(diào)查:罐奶粉中抽取罐進(jìn)行食品安全衛(wèi)生檢查;高二年級(jí)有名學(xué)生,為調(diào)查學(xué)生的學(xué)習(xí)情況抽取一個(gè)容量為的樣本;從某社區(qū)戶(hù)高收入家庭,戶(hù)中等收入家庭,戶(hù)低收入家庭中選出戶(hù)進(jìn)行消費(fèi)水平調(diào)查.以下各調(diào)查方法較為合理的是(

A.系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣,分層抽樣

B.簡(jiǎn)單隨機(jī)抽樣,分層抽樣,系統(tǒng)抽樣

C.分層抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

D.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣,分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,平面平面,,,.

(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)已知在ABC中,AB,C的對(duì)邊分別為ab,c,,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案