4.向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow$|=|2$\overrightarrow{a}$+$\overrightarrow$|=1,則|$\overrightarrow$|=$\sqrt{3}$.

分析 利用數(shù)量積運(yùn)算性質(zhì)即可得出.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$滿(mǎn)足|$\overrightarrow{a}$|=|$\overrightarrow{a}$+$\overrightarrow$|=|2$\overrightarrow{a}$+$\overrightarrow$|=1,
∴$|\overrightarrow{a}+\overrightarrow{|}^{2}$=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=1,$|2\overrightarrow{a}+\overrightarrow{|}^{2}$=4${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=1,
把$|\overrightarrow{a}|$=1代入可得:$2\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=0,$4\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=-3,
∴${\overrightarrow}^{2}$=3,解得$|\overrightarrow|$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線的中心為原點(diǎn),離心率e=$\sqrt{5}$,且它的一個(gè)焦點(diǎn)與拋物線x2=-8$\sqrt{5}$y的焦點(diǎn)重合,則此雙曲線方程為( 。
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{16}=1$C.$\frac{x^2}{16}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)x∈R,均有f(x)>f′(x),則有( 。
A.e2016f(-2016)<f(0),f(2016)<e2016f(0)B.e2016f(-2016)>f(0),f(2016)>e2016f(0)
C.e2016f(-2016)<f(0),f(2016)>e2016f(0)D.e2016f(-2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,a,b,c為角A,B,C的對(duì)邊,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,則cos5B=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}中,a1=1,a4=7,且an+1=an+λn.
(1)求λ的值及數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)${b_n}=\frac{1}{{{a_{n+1}}-1}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b,c滿(mǎn)足4a=9,b=log${\;}_{\frac{1}{3}}$5,c3=$\frac{3}{5}$,則(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≥1\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y( 。
A.有最小值3,無(wú)最大值B.有最小值5,無(wú)最大值
C.有最大值3,無(wú)最小值D.有最大值5,無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.等差數(shù)列{an}的公差為d,關(guān)于x的不等式a1x2+($\fracw0nhgru{2}$-a1)x+c≥0的解集為[$\frac{1}{3}$,$\frac{4}{5}$],則使數(shù)列{an}的前n項(xiàng)和Sn最小的正整數(shù)n的值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)是定義在(-∞,1)∪(1,+∞)上的可導(dǎo)函數(shù),且f(x)=f′(2)x2+xf(x)+x,則f(x)的解析式為f(x)=$\frac{{x}^{2}+x}{1-x}$,(x≠1).

查看答案和解析>>

同步練習(xí)冊(cè)答案