雙曲線數(shù)學(xué)公式(a>0,b>0),過(guò)焦點(diǎn)F1的弦AB(A、B在雙曲線的同支上)長(zhǎng)為m,另一焦點(diǎn)為F2,求△ABF2的周長(zhǎng).

解:∵|AF2|-|AF1|=2a,|BF2|-|AF1|=2a,…(2分)
∴(|AF2|-|AF1|)+(|BF2|-|BF1|)=4a,…(4分)
又|AF1|+|BF1|=|AB|=m,
∴|AF2|+|BF2|=4a+(|AF1|+|BF1|)=4a+m.…(6分)
∴△ABF2的周長(zhǎng)等于|AF2|+|BF2|+|AB|=4a+2m.…(8分)
分析:利用雙曲線的定義可得|AF2|-|AF1|=2a,|BF2|-|AF1|=2a,結(jié)合|AF1|+|BF1|=|AB|=m,即可求得△ABF2的周長(zhǎng).
點(diǎn)評(píng):本題考查雙曲線的簡(jiǎn)單性質(zhì),掌握雙曲線的定義是解決問(wèn)題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16.已知F1、F2為雙曲線=1(a>0,b>0且a≠b)的兩個(gè)焦點(diǎn),P為雙曲線右支上異于頂點(diǎn)的任意一點(diǎn),O為坐標(biāo)原點(diǎn).下面四個(gè)命題

(A)△PF1F2的內(nèi)切圓的圓心必在直線x=a上;

(B)△PF1F2的內(nèi)切圓的圓心必在直線x=b上;

(C)△PF1F2的內(nèi)切圓的圓心必在直線OP上;

(D)△PF1F2的內(nèi)切圓必通過(guò)點(diǎn)(a,0).

    其中真命題的代號(hào)是__________(寫(xiě)出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F、F為雙曲線(a>0,b>0)的焦點(diǎn),過(guò)F作垂直于x軸的直線交雙曲線于點(diǎn)P,且∠PFF=30,求雙曲線的漸近線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,—2),點(diǎn)C滿(mǎn)足,其中,且,

(1)求點(diǎn)C的軌跡方程;

(2)設(shè)點(diǎn)C的軌跡與雙曲線(a>0,b>0)相交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)原點(diǎn),求證:為定值;

(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實(shí)軸長(zhǎng)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新課標(biāo)高三二輪復(fù)習(xí)綜合驗(yàn)收(6)理科數(shù)學(xué)試卷 題型:選擇題

已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)A在雙曲線第一象限的圖象上,若△的面積為1,且,,則雙曲線方程為(    )

A.        B.

C.     D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆陜西省高二上學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題

已知F1F2為雙曲線a>0,b>0)的焦點(diǎn),過(guò)F2作垂直于x軸的直線交雙曲線于點(diǎn)P,且∠PF1F2=30°.求雙曲線的離心率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案