【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,左焦點(diǎn),直線與橢圓交于兩點(diǎn), 為橢圓上異于的點(diǎn).

1)求橢圓的方程;

2)若,以為直徑的圓過(guò)點(diǎn),求圓的標(biāo)準(zhǔn)方程;

3)設(shè)直線軸分別交于,證明: 為定值.

【答案】123)見(jiàn)解析

【解析】試題分析:(1)根據(jù)離心率為,左焦點(diǎn),可求出,從而求出橢圓的方程;(2)設(shè),則,且,由,以為直徑的圓過(guò)點(diǎn)可得,從而可求出圓的標(biāo)準(zhǔn)方程;(3)設(shè),則的方程為,求出兩點(diǎn)的縱坐標(biāo),則 ,化簡(jiǎn)求得.

試題解析:(1)∵

, .

∴橢圓方程為.

(2)設(shè),則,且.①

∵以為直徑的圓過(guò)點(diǎn)

又∵

.②

由①②解得: ,或(舍)

.

又∵圓的圓心為的中點(diǎn),半徑為

∴圓的標(biāo)準(zhǔn)方程為.

(3)設(shè),則的方程為,若不存在,顯然不符合條件.

;同理

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)”的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過(guò)抽樣,得到參與問(wèn)卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(1)估計(jì)該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(2)由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求

(3)在(2)的條件下,有關(guān)部門為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(。┑梅植坏陀可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次;

(ⅱ)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:

現(xiàn)有一位市民要參加此次問(wèn)卷調(diào)查,記 (單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列和數(shù)學(xué)期望.

附:

,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)中央廣場(chǎng)由兩部分組成,一部分是邊長(zhǎng)為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, , 將廣場(chǎng)分割為個(gè)區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點(diǎn)在半圓弧上, 分別與, 相交于點(diǎn), .(道路寬度忽略不計(jì))

(1)若經(jīng)過(guò)圓心,求點(diǎn)的距離;

(2)設(shè) .

①試用表示的長(zhǎng)度;

②當(dāng)為何值時(shí),綠化區(qū)域面積之和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方形中, , 中點(diǎn)(圖1).將沿折起,使得(圖2).在圖2中:

(1)求證:平面 平面;

2 ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年交警統(tǒng)計(jì)了某路段過(guò)往車輛的車速大小與發(fā)生交通事故的次數(shù),得到如表所示的數(shù)據(jù):

車速xkm/h

60

70

80

90

100

事故次數(shù)y

1

3

6

9

11

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+;

(3)根據(jù)(2)所得速度與事故發(fā)生次數(shù)的規(guī)律,試說(shuō)明交管部門可采取什么措施以減少事故的發(fā)生.

附:=,=-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了41日至45日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

41

42

43

44

45

溫差攝氏度

8

12

13

11

10

發(fā)芽數(shù)

18

26

30

25

20

該學(xué)習(xí)組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;

2)若選取的是41日與45日這2組數(shù)據(jù)做檢驗(yàn),請(qǐng)根據(jù)42日至44日這3組數(shù)據(jù)求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)所得的線性回歸方程是否可靠?

參考公式和數(shù)據(jù):;,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解高一學(xué)生的視力健康狀況,在高一年級(jí)體檢活動(dòng)中采用統(tǒng)一的標(biāo)準(zhǔn)對(duì)數(shù)視力表,按照《中國(guó)學(xué)生體質(zhì)健康監(jiān)測(cè)工作手冊(cè)》的方法對(duì)1039名學(xué)生進(jìn)行了視力檢測(cè),判斷標(biāo)準(zhǔn)為:雙眼裸眼視力為視力正常, 為視力低下,其中為輕度, 為中度, 為重度.統(tǒng)計(jì)檢測(cè)結(jié)果后得到如圖所示的柱狀圖.

(1)求該校高一年級(jí)輕度近視患病率;

(2)根據(jù)保護(hù)視力的需要,需通知檢查結(jié)果為“重度近視”學(xué)生的家長(zhǎng)帶孩子去醫(yī)院眼科進(jìn)一步檢查和確診,并開(kāi)展相應(yīng)的矯治,則該校高一年級(jí)需通知的家長(zhǎng)人數(shù)約為多少人?

(3)若某班級(jí)6名學(xué)生中有2人為視力正常,則從這6名學(xué)生中任選2人,恰有1人視力正常的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,,點(diǎn)為線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)是( )

①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;

②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過(guò)定圓上一定點(diǎn)作圓的動(dòng)弦,為原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;

④已知是橢圓的左焦點(diǎn),設(shè)動(dòng)點(diǎn)在橢圓上,若直線的斜率大于,則直線為原點(diǎn))的斜率的取值范圍是.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案