【題目】在直角坐標(biāo)系中,直線和曲線的參數(shù)方程分別為(為參數(shù)),(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線、曲線的普通方程,以及曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線,在第一象限內(nèi)的交點分別為,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在充分競爭的市場環(huán)境中,產(chǎn)品的定價至關(guān)重要,它將影響產(chǎn)品的銷量,進而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場經(jīng)驗,總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個銷售季度的銷量單位:萬件與售價單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系.
當(dāng)產(chǎn)品A的售價在什么范圍內(nèi)時,能使得其銷量不低于5萬件?
當(dāng)產(chǎn)品A的售價為多少時,總利潤最大?注:總利潤銷量售價單件成本
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不等的實根,則
①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;
②若方程的兩實根為求使成立的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.該公司第年需要付出設(shè)備的維修和工人工資等費用的信息如下圖.
(1)求;
(2)引進這種設(shè)備后,從第幾年開始該公司能夠獲利?
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在側(cè)棱垂直底面的四棱柱中,,,.,,,分別是的中點,為與的交點.
(I) 求線段,的長度;
(II)證明:平面;
(III)求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為200萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時,(萬元).當(dāng)年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),已知,
(1)若函數(shù),求的值;
(2)當(dāng)時,求證:函數(shù)在上是單調(diào)遞增函數(shù);
(3)若對于一切,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com