【題目】如圖在側(cè)棱垂直底面的四棱柱中,,,.,,,分別是的中點(diǎn),為與的交點(diǎn).
(I) 求線段,的長(zhǎng)度;
(II)證明:平面;
(III)求與平面所成的角的正弦值.
【答案】(1) ;(2)詳見(jiàn)解析;(3) .
【解析】
試題分析:(1) 在中,由勾股定理求得的長(zhǎng)度, 在矩形中,,利用三角形相似求出和;(2) 因?yàn)?/span>,所以,又因?yàn)?/span>,由線面垂直的判定定理可得,,再根據(jù)勾股定理計(jì)算得出,由線面垂直的判定定理即可證明;(3) 連結(jié),由(II)知平面,所以是與平面所成的角. 在直角中,求出的正弦值即與平面所成角的正弦值.
試題解析:
(I)由題知,在中,,所以.
又在矩形中,,所以,
所以,同理.
(II)因?yàn)?/span>,所以,
又因?yàn)?/span>,,,,
所以,.
由(I)知,,,,所以,
所以.又,,,
所以平面.
(III)連結(jié),由(II)知平面,
所以是與平面所成的角.
由(I)及題知,在直角中,,,
得,所以與平面所成角的正弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù)項(xiàng)為的函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間(為自然對(duì)數(shù)的底數(shù))上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線方程為x2=2py(p>0),M為直線y=-2p上任一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
附:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:
(1)根據(jù)散點(diǎn)圖判斷,與,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)與的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線和曲線的參數(shù)方程分別為(為參數(shù)),(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線、曲線的普通方程,以及曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線,在第一象限內(nèi)的交點(diǎn)分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高中生在被問(wèn)及“家,朋友聚集的地方,個(gè)人空間”三個(gè)場(chǎng)所中“感到最幸福的場(chǎng)所在哪里?”這個(gè)問(wèn)題時(shí),從中國(guó)某城市的高中生中,隨機(jī)抽取了55人,從美國(guó)某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國(guó)高中生答題情況是:選擇家的占、朋友聚集的地方占、個(gè)人空間占.美國(guó)高中生答題情況是:朋友聚集的地方占、家占、個(gè)人空間占.如下表:
在家里最幸福 | 在其它場(chǎng)所幸福 | 合計(jì) | |
中國(guó)高中生 | |||
美國(guó)高中生 | |||
合計(jì) |
(Ⅰ)請(qǐng)將列聯(lián)表補(bǔ)充完整;試判斷能否有的把握認(rèn)為“戀家”與否與國(guó)別有關(guān);
(Ⅱ)從被調(diào)查的不“戀家”的美國(guó)學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再?gòu)?/span>4人中隨機(jī)抽取2人到中國(guó)交流學(xué)習(xí),求2人中含有在“個(gè)人空間”感到幸福的學(xué)生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)數(shù)據(jù)表明,樣本中所有人每天用于閱讀的時(shí)間(簡(jiǎn)稱閱讀用時(shí))都不超過(guò)3小時(shí),其頻數(shù)分布表如下:(用時(shí)單位:小時(shí))
用時(shí)分組 | ||||||
頻數(shù) | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用樣本估計(jì)總體,求該市市民每天閱讀用時(shí)的平均值;
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書經(jīng)驗(yàn)交流會(huì),從這200人中篩選出男女代表各3名,其中有2名男代表和1名女代表喜歡古典文學(xué).現(xiàn)從這6名代表中任選2名男代表和2名女代表參加交流會(huì),求參加交流會(huì)的4名代表中,喜歡古典文學(xué)的男代表多于喜歡古典文學(xué)的女代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個(gè)命題:①;②函數(shù)是偶函數(shù);③任取一個(gè)不為零的有理數(shù),對(duì)任意的恒成立;④存在三個(gè)點(diǎn),,,使得為等邊三角形.其中真命題的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓()的圓心為點(diǎn),直線:.
(1)若,求直線被圓所截得弦長(zhǎng)的最大值;
(2)若直線是圓心下方的切線,當(dāng)在上變化時(shí),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com