【題目】探究函數(shù),上的最小值,并確定取得最小值時的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

14

7

5.34

5.11

5.01

5

5.01

5.04

5.08

5.67

7

8.6

12.14

1)觀察表中值隨值變化趨勢特點,請你直接寫出函數(shù),的單調區(qū)間,并指出當取何值時函數(shù)的最小值為多少;

2)用單調性定義證明函數(shù)上的單調性.

【答案】1見解析;(2)見解析

【解析】

1)根據(jù)表格數(shù)據(jù)的變化,確定函數(shù)的單調區(qū)間和函數(shù)的最小值點.

2)利用單調性的定義證明函數(shù)的單調性.

1)由表中可知fx)在 0,2]為減函數(shù),[2,+∞)為增函數(shù).

并且當x2 fxmin5

2)證明:設0x1x22,

,

0x1x22,

x1x20,0x1x24,x1x240,

fx1)﹣fx2)>0,

fx1)>fx2).

fx)在(0,2)為減函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以“你我中國夢,全民建小康”為主題、“社會主義核心價值觀”為主線,為了了解兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準備工作的滿意程度,對地區(qū)的100名觀眾進行統(tǒng)計,統(tǒng)計結果如下:

在被調查的全體觀眾中隨機抽取1名“非常滿意”的人是地區(qū)的概率為0.45,且.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少?

(Ⅱ)在(Ⅰ)抽取的“滿意”的觀眾中,隨機選出3人進行座談,求至少有兩名是地區(qū)觀眾的概率?

(Ⅲ)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系?

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足:對于任意均為數(shù)列中的項,則稱數(shù)列為“ 數(shù)列”.

(1)若數(shù)列的前項和,求證:數(shù)列為“ 數(shù)列”;

(2)若公差為的等差數(shù)列為“ 數(shù)列”,求的取值范圍;

(3)若數(shù)列為“ 數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓與圓有公共點,則實數(shù)的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:

(Ⅰ)請?zhí)顚懴卤恚▽懗鲇嬎氵^程):

(Ⅱ)從下列三個不同的角度對這次測試結果進行分析;

①從平均數(shù)和方差相結合看(分析誰的成績更穩(wěn)定);

②從平均數(shù)和命中9環(huán)及9環(huán)以上的次數(shù)相結合看(分析誰的成績好些);

③從折線圖上兩人射擊命中環(huán)數(shù)的走勢看(分析誰更有潛力)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市“招手即!惫财嚨钠眱r按下列規(guī)則制定:5公里以內(5公里),票價2元;5公里以上,每增加5公里,票價增加1(不足5公里的按5公里計算).如果某條線路的總里程為20公里,

1)請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象.

2(5,10]內有且僅有1個公共點,求a范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且對任意的. ,.

(1)求并證明的奇偶性;

(2)判斷的單調性并證明;

(3);若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為11,則判斷框中的條件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動.為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個小組中隨機抽取10名學生參加問卷調查.各組人數(shù)統(tǒng)計如下:

(1)從參加問卷調查的10名學生中隨機抽取兩名,求這兩名學生來自同一個小組的概率;

(2)在參加問卷調查的10名學生中,從來自甲、丙兩個小組的學生中隨機抽取兩名,用表示抽得甲組學生的人數(shù),的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案