如圖,四凌錐p—ABCD中,zxxk底面ABCD為矩形,PA上面ABCD,E為PD的點(diǎn)。
(I)證明:PP//平面AEC;
(II)設(shè)置AP=1,AD=,三凌
P-ABD的體積V=,求A到平面PBD的距離。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)六棱錐的體積為,其底面是邊長(zhǎng)為2的正六邊形,側(cè)棱長(zhǎng)都相等,則該六棱錐的側(cè)面積為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(表示1cm),圖中粗線(xiàn)畫(huà)出
的是某零件的三視圖,該零件由一個(gè)底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來(lái)毛坯體積的比值為
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
甲、已兩名元?jiǎng)訂T各自等可能地從紅、白、藍(lán)3種顏色的運(yùn)動(dòng)服種選擇1種,則他們選擇相同顏色運(yùn)動(dòng)服的概率為_(kāi)______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為p=2cosθ,θ[0,]。
(I)求C的參數(shù)方程;
(II)設(shè)點(diǎn)D在C上,C在D處的切線(xiàn)與直線(xiàn)l:y=x+2垂直,根據(jù)(I)中你得到的參數(shù)方程,確定D的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若將一個(gè)質(zhì)點(diǎn)隨機(jī)投入如圖所示的長(zhǎng)方形ABCD中,其中AB=2,BC=1,則質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得曲線(xiàn)C.
(1)寫(xiě)出C的參數(shù)方程;
(2)設(shè)直線(xiàn)與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過(guò)線(xiàn)段的中點(diǎn)且與垂直的直線(xiàn)的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形的邊長(zhǎng)為2,分別為的中點(diǎn),在五棱錐
中,為棱的中點(diǎn),平面與棱分別交于點(diǎn).
(1)求證:;
(2)若底面,且,求直線(xiàn)與平面所成角的大小,并
求線(xiàn)段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com