【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求三棱柱ABC﹣A1B1C1的體積.
【答案】
(1)證明:如圖,
取AB的中點(diǎn)O,連結(jié)OC,OA1,A1B.
因?yàn)镃A=CB,所以O(shè)C⊥AB.
由于AB=AA1, ,故△AA1B為等邊三角形,
所以O(shè)A1⊥AB.
因?yàn)镺C∩OA1=O,所以AB⊥平面OA1C.
又A1C平面OA1C,故AB⊥A1C;
(2)解:由題設(shè)知△ABC與△AA1B都是邊長為2的等邊三角形,
所以 .
又 ,則 ,故OA1⊥OC.
因?yàn)镺C∩AB=O,所以O(shè)A1⊥平面ABC,OA1為三棱柱ABC﹣A1B1C1的高.
又△ABC的面積 ,故三棱柱ABC﹣A1B1C1的體積 .
【解析】(1)由題目給出的邊的關(guān)系,可想到去AB中點(diǎn)O,連結(jié)OC,OA1 , 可通過證明AB⊥平面OA1C得要證的結(jié)論;(2)在三角形OCA1中,由勾股定理得到OA1⊥OC,再根據(jù)OA1⊥AB,得到OA1為三棱柱ABC﹣A1B1C1的高,利用已知給出的邊的長度,直接利用棱柱體積公式求體積.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握垂直于同一個(gè)平面的兩條直線平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷并證明f(x)在(﹣∞,+∞)上的單調(diào)性;
(3)若f(k3x)+f(3x﹣9x+1)>0對(duì)任意x≥0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=ax3﹣bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值為 , (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)=k有3個(gè)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的雙曲線,命題q:點(diǎn)(m,1)在橢圓 的內(nèi)部;命題r:函數(shù)f(m)=log2(m﹣a)的定義域;
(1)若p∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p是r的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(用空間向量坐標(biāo)表示解答)如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點(diǎn).
(1)求證:AC1∥面B1CD
(2)求直線AA1與面B1CD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣px﹣2=0},B={x|x2+qx+r=0},若A∪B={﹣2,1,5},A∩B={﹣2},求p+q+r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)f′(x)= v,g(x)=f(x)+af′(x).
(1)若a<0,試判斷g(x)在定義域內(nèi)的單調(diào)性;
(2)若g(x)在[1,e]上的最小值為 ,求a的值;
(3)證明:當(dāng)a≥1時(shí),g(x)>ln(x+1)在(0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域?yàn)镸,過圓弧上中點(diǎn)A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域?yàn)镹.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點(diǎn)B,若設(shè)點(diǎn)B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com