【題目】正四棱錐的底面正方形邊長是3,是在底面上的射影,,是上的一點,過且與、都平行的截面為五邊形.
(1)在圖中作出截面,并寫出作圖過程;
(2)求該截面面積的最大值.
【答案】(1)見解析;(2)9.
【解析】
(1)根據(jù)題意,作輔助線,過作, 且過點作,交于點,過點作交于點,連接, 即可得出截面;
(2)由題意可知,截面,截面,根據(jù)平面,利用線面垂直的性質(zhì)和判定,可證出平面,則,進(jìn)而得出,所以截面是由兩個全等的直角梯形組成,設(shè),則,截面面積為,根據(jù),代入計算,最后利用二次函數(shù)求得最大值.
解:(1)由題可知,是上的一點,過且與、都平行的截面為五邊形,
過作,交于點,交于點,
過作,交于點,
再過點作,交于點,
過點作交于點,連接,
,,,
,
所以共面,平面,
,平面,
平面,同理平面.
所以過且與、都平行的截面如下圖:
(2)由題意可知,截面,截面,
,,
而是在底面上的射影,,
平面,,
,且,
所以平面,則,
,
又, 為正四棱錐,
,故,
于是,
因此截面是由兩個全等的直角梯形組成,
因,則為等腰直角三角形,
設(shè),則,
所以,,
,同理得,,
又因為,
設(shè)截面面積為,
所以,
即:,
當(dāng)且僅當(dāng)時,有最大值為9.
所以截面的面積最大值為9.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是我們常見的空間幾何體.
(1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
(11)
(1)以上幾何體中哪些是棱柱?
(2)一個幾何體為棱柱的充要條件是什么?
(3)如何求以上幾何體的表面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點F為拋物線的焦點,點A在拋物線E上,
點B在x軸上,且是邊長為2的等邊三角形。
(1)求拋物線E的方程;
(2)設(shè)C是拋物線E上的動點,直線為拋物線E在點C處的切線,求點B到直線距離的最小值,并求此時點C的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求實數(shù)的值;
(2)用定義法討論并證明函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了考核甲,乙兩部門的工作情況,隨機(jī)訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價越高),繪制莖葉圖如下:
(1)分別估計該市的市民對甲,乙兩部門評分的中位數(shù);
(2)分別估計該市的市民對甲,乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)(,)
(1)設(shè),求的單調(diào)區(qū)間;
(2)設(shè)為導(dǎo)數(shù),
(i)證明:當(dāng),時,;
(ii)設(shè)關(guān)于的方程的根為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:上一點與兩焦點構(gòu)成的三角形的周長為,離心率為 .
(1)求橢圓的方程;
(2)設(shè)橢圓C的右頂點和上頂點分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(點P在第一象限).若四邊形APBQ面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com